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1 Introduction

This chapter considers econometric methods for evaluating effects of social programs when

the programs are nonrandomly placed and/or the program participants are nonrandomly

selected. For example, family planning programs are often targeted at high fertility regions

and individuals typically self-select into the programs. Similarly, health, education and

nutrition interventions are often targeted at high poverty areas and eligibility for such pro-

grams may be restricted to individuals who meet some criteria. The focus of this chapter

is on estimation of the effects of program interventions with nonexperimental data. Some

of the estimation methods can also be adapted to experimental settings, to address related

problems of nonrandom program attrition or dropout.

Two questions that are often of interest in evaluating effects of program interventions

are (1) Do participants in programs benefit from them?, and (2) How would program im-

pacts and costs differ if the features of the program were changed. We will consider different

approaches to answering these questions in a way that recognizes heterogeneity in how indi-

viduals respond to treatment. We distinguish two types of evaluations, ex post evaluations,

which analyze effects of existing programs, and ex ante evaluations, which analyze effects

of counterfactual programs. Most of this chapter considers empirical methods for ex post

evaluation, which is the most common. Section four takes up the problem of evaluating pro-

grams prior their implementation, which is useful for designing new programs or comparing

existing programs to alternatives.

The goals of this chapter are (i) to describe the identifying assumptions needed to justify

the application of different kinds of program or treatment effect estimators, (ii) to discuss

the behavioral implications of these assumptions, (iii) to illustrate how different kinds of

estimators are related to one another, (iv) to summarize the data requirements of the esti-

mators and (v) to provide examples of how these evaluation methods have been applied in

the development literature to assess the effects of program interventions.
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2 The Evaluation Problem

We begin by introducing some notation for describing the evaluation problem and the pa-

rameters of interest. For simplicity, suppose there are only two states of the world, corre-

sponding to the state of being with and without a treatment. For example, the outcome of

interest could be a health measure and the treatment could be a health or nutrition inter-

vention. Let D = 1 for persons who receive the intervention and D = 0 for persons who do

not receive it. Associated with each state is a potential outcome. Y0 denotes the potential

outcome in the untreated state and Y1 the potential outcome in the treated state. Each

person has a (Y0, Y1) pair that represents the outcomes that would be realized in the two

states. Because the person can only be in one state at a time, at most one of the two states

is observed at any given point in time. The observed outcome is

Y = DY1 + (1−D)Y0.

The gain from moving an individual from the state “without treatment” to the state “with

treatment” is

∆ = Y1 − Y0.

Because of the missing data problem, the gain from treatment is not directly observed

for anyone. Inferring gains from treatment requires solving a missing data problem. The

evaluation literature has developed a variety of approaches.

2.1 Parameters of interest

In evaluating the effects of a social program, there may be many questions of interest, such

as the benefits accruing to participants, any effects on nonparticipants, and program costs,

which may include tax receipts used to finance the program. For example, consider the

effects of a school subsidy program that provides incentive payments to parents for sending

their children to school. If the subsidies are sufficiently large, we would expect such a program

to have direct effects on the families participating in it. The program may also have indirect
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effects on nonparticipating families, perhaps through program-induced changes in the schools

attended by nonparticipating children. If the program is financed from general taxes, the

indirect effects might include any disincentives to work due to higher taxes. Thus, we

distinguish between

direct effects: effects of the program on outcomes of program participants

indirect effects: effects of the program that are not directly related to program partici-

pation.

The program evaluation literature has focused mainly on estimating direct effects of the

program and also on understanding what the program effects would be if the program offer

were extended to other individuals not currently participating. Nonparticipants are often

used as a source of control group data, so the maintained assumption typically is that the

indirect effects on nonparticipants are negligible or that the goal of the evaluation is to

uncover program effects on participants, conditional on any indirect effects.

Because program impacts are not directly observed for any individual, researchers usually

hope to uncover only some features of the treatment impact distribution, such as its mean

or median. Typical parameters of interest are the following:

(a) the proportion of program participants that benefit from the program

Pr(Y1 > Y0|D = 1) = Pr(∆ > 0|D = 1)

(b) the proportion of the total population benefitting from the program:

Pr(∆ > 0|D = 1)Pr(D = 1)

(c) quantiles of the impact distribution (such as the median), where q is the selected quantile

inf
∆
{∆ : F (∆|D = 1) > q}

(d) the distribution of gains for individuals with some characteristics X0

F (∆|D = 1,X = X0),
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where X represents some individual characteristics that are not affected by the pro-

gram, such as age, education, race, or poverty level prior to the program intervention.

Much of the program evaluation literature develops methods for estimating two key

parameters of interest:1

(e) the average gain from the program for persons with characteristics X

E(Y1 − Y0|X) = E(∆|X).

(f) the average gain from the program for program participants with characteristics X :

E(Y1 − Y0|X) = E(∆|D = 1, X).

The parameter (e) is commonly referred to as the average impact of treatment (ATE)

and parameter (f) is known as the average impact of treatment on the treated (TT). If the

individuals who take the program are the ones who tend to receive the greatest benefit from

it, then we expect TT(X)>ATE(X).

2.2 What is the distinction between average program gain and
average program gain for participants?

We will next consider the distinction between the ATE and the TT parameters and the

conditions under which the two are the same. Suppose the outcomes in the treated and

untreated states can be written as an additively separable function of observables (X) and

unobservables (U0 and U1):

Y1 = ϕ1(X) + U1

Y0 = ϕ0(X) + U0.

The observed outcome Y = DY1 + (1−D)Y0 can thus be written as:

Y = Xβ0 +D(ϕ1(X)− ϕ0(X)) + {U0 +D(U1 − U0)}.
1See, e.g., Rosenbaum and Rubin (1985), Heckman and Robb (1985), or Heckman, Lalonde and Smith

(1999).
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Assume that E(U0|X) = E(U1|X) = 0. The gain to an individual from participating in

the program is ∆ = D(ϕ1(X) − ϕ0(X)) + D(U1 − U0). Individuals may or may not know

their values of U1 and U0 at the time of deciding whether to participate in a program. If

people self-select into the program based on their anticipated gains from the program, then

we might expect that E(U0|X,D) 6= 0 and E(U1|X,D) 6= 0 . That is, if the gain from the

program depends on U1 and U0 and if people know their values of U1 and U0, or can to some

extent forecast the values, then we would expect that people make use of this information

when they decide whether to select into the program.

In the notation of the above statistical model for outcomes, the average impact of treat-

ment (ATE) for a person with characteristics X is

E(∆|X) = ϕ1(X)− ϕ0(X) +E(U1|X)−E(U0|X)
= ϕ1(X)− ϕ0(X).

The average impact of treatment on the treated (TT) is

E(∆|X) = ϕ1(X)− ϕ0(X) +E(U1 − U0|X,D = 1).

Note that the average effect of treatment on the treated combines the “structural parameters”

(the parameters of the functions ϕ0(X) and ϕ1(X)) with means of the unobservables.(See

Heckman, 2000)

For completeness, we can also define the average impact of treatment on the untreated

(UT) as

E(∆|X) = ϕ1(X)− ϕ0(X) +E(U1 − U0|X,D = 0),

which gives the impact of a program or intervention on the group that currently does not

participate in it. This parameter may be of interest if there are plans to expand the scope

of the program to include those currently nonparticipating.

Observe that if U1 = U0, then the TT, ATE and UT parameters are all the same.

Allowing the random draw to differ in treated and untreated states is critical to allowing for
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unobserved heterogeneity in how people respond to treatment. There is, however, a special

case where the parameters may be equal even if U1 6= U0, that is, when

E(U1 − U0|X,D) = 0.

Under this restriction, D is uninformative on U1 − U0, but it is not necessarily the case

that U1 = U0. The conditional mean restriction might be satisfied if agents making the

participation decisions (e.g. individuals, program administrators or others) do not act on

U1 − U0 in making the decision, perhaps because they do not know anything about their

own indiosyncractic gain from participating in the program at the time of deciding whether

to participate. In this special case, there is ex post heterogeneity in how people respond to

treatment, but it is not acted upon ex ante.

As discussed in Heckman, Lalonde and Smith (1999), there are three different types of

assumptions that can be made in the evaluation model that vary in their level of generality:

(A.1) conditional on X, the program effect is the same for everyone (U1 = U0)

(A.2) the program effect (given X) varies across individuals but U1 − U0 does not help

predict participation in the program

(A.3) the program effect (given X) varies across individuals and U1 − U0 does predict who

participates in the program.

(A.1) is the most restrictive and (A.3) the most general. We will consider ways of estimating

the TT and ATE parameters of interest under these three different sets of assumptions.

2.3 Sources of Bias in Estimating E(∆|X,D = 1) and E(∆|X)
The model of the last section can be rewritten as

Y = ϕ0(X) +D(ϕ1(X)− ϕ0(X)) + {U0 +D(U1 − U0)}.
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In terms of the two parameters of interest, (ATE=E(∆|X) and TT=E(∆|X,D = 1)), the

outcomes model can be written as:

Y = ϕ0(X) +DE(∆|X) + {U0 +D(U1 − U0)} (*)

or

Y = ϕ0(X) +DE(∆|X,D = 1) + {U0 +D[U1 − U0 −E(U1 − U0|X,D = 1)]}.

For simplicity, suppose the X variables are discrete and that we estimated the effects of

the intervention (D) by the coefficients b̂x from an ordinary least squares regression:

y = aX + bxXD + v.2

This model, which is popular in applied work, is known as the "common effect" model. In

light of the true outcome model, bias for the ATE parameter (E(∆|X)) arises if the mean
of the error term does not have conditional mean zero, i.e.

E(U0 +D(U1 − U0)|X,D)) 6= 0.

Under assumption A.1 and A.2, bias arises only from E(U0|X,D) 6= 0, but under the more
general assumption A.3, there is also potential bias arising from E(U1−U0|D,X) 6= 0. For
estimating the TT parameter E(∆|X,D = 1), under assumptions A.1-A.3, bias arises if

E(U0|X,D) 6= 0.

3 Solutions to the Evaluation Problem

3.1 Traditional Regression Estimators

Nonexperimental estimators of program impacts typically use two types of data to impute

the missing counterfactual outcomes for program participants: data on participants at a

point in time prior to entering the program and data on nonparticipants. We next consider

three widely used methods for estimating the (TT) parameter, E(∆|X,D = 1), using non-

experimental data: (a) the before-after estimator, (b) the cross-section estimator, and (c)
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the difference-in-difference estimator. The extensions to estimating the ATE parameter are

straightforward.

To describe the estimators and their assumptions, we introduce a panel data regression

framework. Using the same notation as previously, denote the outcome measures by Y1it and

Y0it, where i denotes the individual and t the time period of observations, where

Y1it = ϕ1(Xit) + U1it (1)

Y0it = ϕ0(Xit) + U0it.

U1it and U0it are assumed to be distributed independently across persons and to satisfy

E(U1it|Xit) = 0 and E(U0it|Xit) = 0. Xit represents conditioning variables that may either

be fixed or time-varying (such as gender or age), but whose distributions are assumed to be

unaffected by whether an individual participates in the program. We can write the observed

outcome at time t as

Yit = ϕ0(Xit) +Ditα
∗(Xit) + U0it, (2)

where Dit denotes being a program participant in the program and α∗(Xit) = ϕ1(Xit) −
ϕ0(Xit) + U1it − U0it is the treatment impact for an individual. Prior to the program

intervention, we observe Y0it = ϕ0(Xit)+U0it for everyone. After the intervention we observe

Y1it = ϕ1(Xit) + U1it for those who received the intervention (for whom Di = 1) and Y0it =

ϕ0(Xit) + U0it for those who did not receive it.

This model is a random coefficient model, because the impact of treatment is assumed

to vary across persons even after conditioning on Xit. Assuming that U0it = U1it = Uit, so

that the unobservable is the same in both the treated and untreated states, and assuming

that ϕ1(Xit)−ϕ0(Xit) is constant with respect to Xit yields the fixed coefficient or “common

effect” version of the model.

3.1.1 Before-After Estimators

As described above, the evaluation problem can be viewed as a missing data problem, because

each person is only observed in one of two potential states at any point in time. The before-
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after estimator addresses the missing data problem by using pre-program data to impute the

missing counterfactual outcomes for program participants.

To simplify notation, assume that the treatment impact is constant across individuals

(i.e. the common effect assumption where ϕ1(Xit) = ϕ0(Xit) + α∗). Let t0 and t denote two

time periods, one before and one after the program intervention. In a regression model, the

before-after estimator is the least squares solution to α∗ in

Yit − Yit0 = ϕ0(Xit)− ϕ0(Xit0) + α∗ + Uit − Uit0 .

Consistency of the estimator for α∗ requires that E(Uit − Uit0|Dit = 1, Dit0 = 0, Xit) = 0. A

special case where this assumption is satisfied is if Uit can be decomposed into a fixed effect

error structure, Uit = fi+ vit, where fi depends on i but does not vary over time and vit is a

iid random error term. For this error structure, it is necessary to assume E(vit − vit0|Di =

1,Xit) = 0. Note that this assumption allows selection into the program to be based on fi

, so the estimation strategy admits to person-specific permanent unobservables.

A major drawback of a before-after estimation strategy is that identification of α∗ breaks

down in the presence of time-specific intercepts, making it impossible to separate effects of

the program from other general time effects on outcomes.3 Before-after estimates can also

be sensitive to the choice of time periods used to construct the estimator. For example,

many studies of employment and training programs in the U.S. and in other countries have

noted that earnings and employment of training program participants dip down in the time

period just prior to entering the program, a pattern now known as Ashenfelter’s Dip.(See

Ashenfelter, 1978, Heckman and Smith, 1999, and Heckman LaLonde and Smith, 1999).

The dip pattern can arise from serially correlated transitory shocks to earnings that may

have been the impetus for the person applying to the training program.4 Another potential

explanation for the dip pattern are the program eligibility criteria that are often imposed to

select out the most disadvantaged persons for participation in programs. These criteria will
3Suppose ϕ(Xit) = Xitβ + γt, where γt is a time specific intercept common across individuals. Such a

common time effect may arise, e.g., from life-cycle wage growth over time or from shocks to the economy.
In this case, α∗ is confounded with γt − γt0 .

4A fixed effect error structure would not generate a dip pattern.
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select into the program persons with low transitory earnings shocks. A simple before-after

estimation strategy that includes the preprogram "dip" period typically gives an upward

biased estimate of the effect of the program.

An advantage of the before-after estimator relative to other classes of estimators is that

it can be implemented even when data are available only on program participants. At a

minimum, two cross-sections of data, one pre-program and post-program, are required to

implement the estimator.

3.1.2 Cross-section Estimators

A cross-section estimator uses data on a comparison group of nonparticipants to impute

counterfactual outcomes for program participants. The data requirements of this estimator

are minimal, only one post-program cross section of data on Dit = 1 and Dit = 0 persons.

Define α̂CS as the ordinary least squares solution to α∗ in

Yit = ϕ0(Xit) +Ditα
∗ + Uit,

where the regression is estimated using data on persons for which Dit = 1 and Dit = 0.

Consistency of the cross-section estimator requires that E(Uit|Dit,Xit) = 0. In a more general

model where U0it 6= U1it, this restriction rules out the possibility that people select into the

program based on expectations about their idiosyncratic gain from the program.

3.1.3 Difference-in-Differences Estimators

The difference-in-differences (DID) estimator is commonly used in evaluation work, as seen

in the applications described below (in 3.1.5). It measures the impact of the program in-

tervention by the difference in the before-after change in outcomes between participants

and nonparticipants, which requires pre- and post-program data (t and t0 data) on program

participants and nonparticipants.

Define an indicator that equals 1 for participants (for whom Dit0 = 0 and Dit = 1),

denoted by IDi and zero otherwise. The difference-in-differences treatment effect estimator is
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the least squares solution for α∗ in

Yit − Yit0 = ϕ0(Xit)− ϕ0(Xit0) +Diα
∗ + {Uit − Uit0},

which allows for individual fixed effects that are differenced-out. Alternatively, the DID

estimator is often implemented using a regression

Yit = ϕ0(Xit) + IDi γ +Ditα
∗ + Uit for t = t0, .., t,

where IDi is an intercept that denotes whether a member of the treatment group.5 This

regression is estimated using participant (Dit0 = 0, Dit = 1) and nonparticipant (Dit0 =

0,Dit = 0) observations.The DID estimator addresses the main shortcoming of the before-

after estimator in that it allows for time-specific intercepts that are common across groups

(included in ϕ0(Xit)). The estimator is consistent if E(Uit − Uit0|Dit − Dit0 , Xit) = 0. The

data requirements are either longitudinal or repeated cross-section data on both participants

and nonparticipants.

3.1.4 Within Estimators

Within estimators identify program impacts from changes in outcomes within some unit,

such as an individual, a family, a school or a village. The previously described before-after

and DID estimators, when implemented using longitudinal data, are examples of within

estimators. We next describe other types of within estimators where the size of the unt is

broader than a single individual and may, for example, represent a family or village.

Let Y0ijt and Y1ijt denote the outcomes for individual i, from unit j, observed at time t.

Write the model for outcomes as:

Yijt = ϕ0(Xijt) + IDij γ +Dijtα
∗ + Uijt

and assume that the error term Uijt can be decomposed as: Uijt = θj + vijt, where θj

represents the effects of unobservables that vary across units but are constant for individuals

within the same unit and vijt are iid.

5The specification could include individual-specific fixed effects, but estimating them consistently would
require an assumption that the panel length T go to infinity.
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Consider taking differences between two individuals from the same unit observed in the

same time period:

Yijt − Yi0jt = ϕ0(Xijt)− ϕ0(Xi0jt) + (I
D
ij − IDi0j)γ + (Dijt −Di0jt)α

∗ + (vijt − vi0jt).

Consistency of the ols estimator of α∗ requires that E(vijt − vi0jt|Xijt,Xi0jt, Dijt,Di0jt) =

0. This assumption implies that within a particular unit, which individual receives the

treatment is random with respect to the error term vijt.

As with the before-after and difference-in-differences estimation approaches, this esti-

mator allows treatment to be selective across units; namely, it allows E(Uijt|Dijt,Xijt) 6= 0,
because treatment selection can be based on the unobserved heterogeneity term θj. The data

requirements of this within estimator are a single cross-section of data. Because the estima-

tor relies on comparisons between the outcomes of treated and untreated persons within the

same unit, the approach implicitly requires that there be no spillover effects from treating

one individual on other individuals within the same unit.

Sometimes it happens that all individuals within a unit receive treatment at the same

time, in which case Dijt = Di0jt for all i in j and the above approach is not feasible. In that

situation, the within estimator can still be implemented if preprogram data (t0) are available

by taking differences across individuals in the same unit observed at different time periods:

Yijt − Yi0jt0 = ϕ0(Xijt)− ϕ0(Xi0jt0) + (I
D
ij − IDi0j)γ + (Dijt −Di0jt0)α

∗ + (vijt − vi0jt0),

whereDi0jt0 = 0. Consistency of this estimator requires that E(vijt−vi0jt0|Dijt, Di0jt0 , Xijt,Xi0jt0) =

0. When IDij = 1 for all i, j, the estimation method is analogous to a before-after estimator,

except that comparisons are between different individuals within the same unit across time.

6

3.1.5 Applications

The above estimators are widely used in empirical evaluation research on developing coun-

tries. One of the earliest applications of the within estimator is Rosenzweig and Wolpin
6In that case, the estimator suffers from the same drawback as the before-after estimator of not being

able to separately identify time effects.
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(1986), which evaluates the impact of a family planning and health counseling program on

child outcomes in the Phillipines. Their study also provides an early discussion in economics

of the statistical problems created by nonrandom program placement, in particular, when

the placement of a program may depend on the outcome variable of interest. Their empirical

analysis adopts the following estimating framework:

Ha
ijt = ρaijβ + µi + µj + εijt,

where Ha
ijt is a child health measure (height, weight) for child i of age a, living in locality j at

time t. ρaij represents the length of time that child was exposed to the program intervention.

µi is a time invariant, child-specific unobserved health endowment and µj a locality level

effect. The estimation approach they adopt compares changes in health outcomes for children

who were exposed to the program to changes for children who were not exposed to it.7 This

evaluation method allows the allocation of the program to be selective based on locality level

and individual level unobserved characteristics. Another study by Rosenzweig and Wolpin

(1988) uses a similar within child estimation strategy to evaluate the effects of a Colombian

child health intervention.

A recent evaluation study that adopts a similar evaluation approach is that of Duflo

(2001), in which a within estimator is used to evaluate the effects of a school construction

program in Indonesia on education and wages. She notes that the new schools were in

part locally financed, which led to nonrandom placement of schools in the more affluent

communities. Because individuals from those communities likely experience better outcomes

even in the absence of the intervention, it is difficult to draw reliable inferences from cross-

sectional comparisons of localities with and without the new schools. Duflo observed that

exposure to the school construction program varied by region of birth and date of birth, so

that the education of individuals who were young when the program began should be more

affected by the program than that of older individuals. Also, individuals in regions where

a larger numbers of schools were built should also be more likely to have been affected by
7In the specification, locality level effects can be separately identified from individual effects using obser-

vations on families that migrated across localities.
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the building programs. Essentially, her identification strategy draws comparisons between

outcomes of older and younger individuals in regions where the school construction program

was very active with those of similar individuals in regions where the school construction

program was less active.

In a recent paper, Glewwe, Kremer, Moulin and Zitzewitz (2004) question the reliability

of a difference-in-difference estimator in an application to evaluating the effectiveness of an

educational intervention in Kenya, which provided schools with flip-charts to use as teach-

ing aids in certain subjects. One of the goals of their study is to assess the efficacy of a

nonexperimental DID estimation approach, by comparing the results obtained by DID to

those obtained from a randomized social experiment. Their DID estimation strategy com-

pares changes over time in test scores in flip-chart and non-flip-chart subjects within the

schools that received the intervention. The experiment randomly allocated the schooling

intervention (flip-charts) to a subset of schools. When Glewwe et. al. (2004) compare the

nonexperimental DID estimates to the experimental estimates, they find substantial differ-

ences between the two sets of estimates. The experimental estimates suggest that flip-charts

had little effect on test scores, while the DID estimates are statistically significantly differ-

ent from zero at conventiona levels. The authors conclude that the difference-in-difference

estimator is unrealiable.8 Glewwe, Kremer, and Moulin (2000, 2003) carry out a similar

comparison between a nonexperimental DID estimator and an experimental estimator, in

which they evaluate other schooling inteventions.

3.2 Matching Methods

Matching is a widely-used method of evaluation that compares the outcomes of program

participants with the outcomes of similar, matched nonparticipants. Their use in evaluating

the effects of program interventions in developing country settings is relatively new. Some

8In their application, an implicit assumption of the DID estimator is that having flip-charts in certain
subjects does not affect students’ achievements in other subjects. For example, the DID estimator could be
invalid if teachers spent more time teaching flip-chart subjects as a result of the intervention and less time
on other subjects. This may account for the deviation between the experimental and the nonexperimental
DID estimates.
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of the earliest applications of matching to evaluate programs in economic development were

World Bank evaluations of anti-poverty programs. 9

One of the main advantages of matching estimators over other kinds of evaluation esti-

mators is that they do not require specifying the functional form of the outcome equation

and are therefore not susceptible to bias due to misspecification along that dimension. For

example, they do not require specifying that outcomes are linear in observables. Traditional

matching estimators pair each program participant with an observably similar nonpartici-

pant and interpret the difference in their outcomes as the effect of the program intervention

(see, e.g., Rosenbaum and Rubin, 1983). More recently developed methods pair program

participants with more than one nonparticipant observation, using statistical methods to es-

timate the matched outcome. In this discussion, we focus on a class of matching estimators

called propensity score matching estimators, because these methods are the most commonly

used and have been shown in some studies to be reliable, under the conditions described

below.10

Matching estimators typically assume that there exist a set of observed characteristics Z

such that outcomes are independent of program participation conditional on Z. That is, it

is assumed that the outcomes (Y0, Y1) are independent of participation status D conditional

on Z,11

(Y0, Y1) ⊥⊥ D |Z . (3)

It is also assumed that for all Z there is a positive probability of either participating (D = 1)

or not participating (D = 0) in the program, i.e.,

0 < Pr(D = 1|Z) < 1. (4)

This second assumption is required so that a matches for D = 0 and D = 1 observations can

be found. If assumptions (3) and (4) are satisfied, then the problem of determining mean

9See the applications described below.
10For discussions of other kinds of matching estimators, see e.g. Cochran (1973), Rubin (1980, 1984).
11In the terminology of Rosenbaum and Rubin (1983) treatment assignment is “strictly ignorable” given

Z.
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program impacts can be solved simply by substituting the Y0 distribution observed for the

matched non-participant group for the missing Y0 distribution for program participants.

Heckman, Ichimura and Todd (1998) show that the above assumptions are overly strong

if the parameter of interest is the mean impact of treatment on the treated (TT ), in which

case a weaker conditional mean independence assumption on Y0 suffices:

E(Y0|Z,D = 1) = E(Y0|Z,D = 0) = E(Y0|Z). (5)

Furthermore, when TT is the parameter of interest, the condition 0 < Pr(D = 1|Z) is also
not required, because that condition only guarantees the possibility of a participant analogue

for each non-participant. The TT parameter requires only

Pr(D = 1|Z) < 1. (6)

Under these assumptions, the mean impact of the program on program participants can

be written as

∆ = E(Y1 − Y0|D = 1)

= E(Y1|D = 1)−EZ|D=1{EY (Y |D = 1, Z)}
= E(Y1|D = 1)−EZ|D=1{EY (Y |D = 0, Z)},

where the second term can be estimated from the mean outcomes of the matched (on Z)

comparison group.12 Assumption (5) implies that D does not help predict values of Y0

conditional on Z. Thus, selection into the program cannot be based directly on values of

Y0.However, no restriction is imposed on Y1, so the method does allow individuals who

expect high levels of Y1 to be selecting into the program. Thus, it permits assumption (A-

3) discussed in section 1.3, with some restrictions on the nature of the selection process

governing program participation decisions.

With nonexperimental data, there may or may not exist a set of observed conditioning

variables for which (3) and (4) hold. A finding of Heckman, Ichimura and Todd (1997)

12The notation EZ|D=1 denotes that the expectation is taken with respect to the f(Z|D = 1) density.
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and HIST (1996,1998) in their application of matching methods to JTPA data is that (4)

was not satisfied, meaning that for a fraction of program participants no match could be

found. If there are regions where the support of Z does not overlap for the D = 1 and D = 0

groups, then matching is only justified when performed over the region of common support.13

The estimated treatment effect must then be defined conditionally on the region of overlap.

Empirical methods for determining the region of overlap are described below.

3.2.1 Reducing the Dimensionality of the Conditioning Problem

Matching can be difficult to implement when the set of conditioning variables Z is large.14

Rosenbaum and Rubin (1983) provide a theorem that is useful in reducing the dimension

of the conditioning problem in implementing the matching method. They show that for

random variables Y and Z and a discrete random variable D

E(D|Y, P (D = 1|Z)) = E(E(D|Y,Z)|Y,Pr(D = 1|Z)),

so that

E(D|Y,Z) = E(D|Z) =⇒ E(D|Y,Pr(D = 1|Z) = E(D|Pr(D = 1|Z)).

This result implies that when Y0 outcomes are independent of program participation con-

ditional on Z, they are also independent of participation conditional on the probability of

participation, P (Z) = Pr(D = 1|Z). Thus, when matching on Z is valid, matching on the

summary statistic Pr(D = 1|Z) (the propensity score) is also valid. Provided that P (Z) can
be estimated parametrically (or semiparametrically at a rate faster than the nonparametric

rate), matching on the propensity score reduces the dimensionality of the matching prob-

13An advantage of randomized experiments noted by Heckman (1997), as well as Heckman, Ichimura and
Todd (1997) and Heckman, Ichimura, Smith and Todd (1998), is that they guarantee that the supports are
equal across treatments and controls, so that the mean impact of the program can always be estimated over
the entire support.

14If Z is discrete, small cell problems may arise. If Z is continuous and the conditional mean E(Y0|D =
0, Z) is estimated nonparametrically, then convergence rates will be slow due to the “curse of dimensionality”
problem.
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lem to that of a univariate matching problem. For this reason, much of the literature on

matching focuses on propensity score matching methods.15

Using the Rosenbaum and Rubin (1983) theorem, the matching procedure can be broken

down into two stages. In the first stage, the propensity score Pr(D = 1|Z) is estimated, using
a binary discrete choice model such as a logit or probit. In the second stage, individuals are

matched on the basis of their predicted probabilities of participation, obtained from the first

stage.

The literature has developed a variety of matching estimators. We next describe some of

the leading examples.

3.2.2 Alternative Matching Estimators

For notational simplicity, let P = P (Z). A typical matching estimator takes the form

α̂M =
1

n1

X
i∈I1∩SP

[Y1i − Ê(Y0i|D = 1, Pi)] (8)

Ê(Y0i|D = 1, Pi) =
X
j∈I0

W (i, j)Y0j,

where I1 denotes the set of program participants, I0 the set of non-participants, SP the region

of common support (see below for ways of constructing this set). n1 denotes the number of

persons in the set I1 ∩ SP . The match for each participant i ∈ I1 ∩ SP is constructed as a

weighted average over the outcomes of non-participants, where the weights W (i, j) depend

on the distance between Pi and Pj.

Define a neighborhood C(Pi) for each i in the participant sample. Neighbors for i are

non-participants j ∈ I0 for whom Pj ∈ C(Pi). The persons matched to i are those people in

set Ai where Ai = {j ∈ I0 | Pj ∈ C(Pi)}. Alternative matching estimators (discussed below)
differ in how the neighborhood is defined and in how the weights W (i, j) are constructed.

15Heckman, Ichumura and Todd (1998) and Hahn (1998) consider whether it is better in terms of efficiency
to match on P (X) or on X directly. For the TT parameter, they show that neither is necessarily more
efficient than the other. If the treatment effect is constant, then it is more efficient to condition on the
propensity score.
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Nearest Neighbor matching Traditional, pairwise matching, also called nearest-neighbor

matching, sets

C(Pi) = min
j
kPi − Pjk , j ∈ I0.

That is, the non-participant with the value of Pj that is closest to Pi is selected as the

match and Ai is a singleton set. The estimator can be implemented either matching with or

without replacement. When matching is performed with replacement, the same comparison

group observation can be used repeatedly as a match. A drawback of matching without

replacement is that the final estimate will likely depend on the initial ordering of the treated

observations for which the matches were selected. The nearest neighbor matching estimator

is often used in practice, in part due to ease of implementation.

Caliper matching Caliper matching (Cochran and Rubin, 1973) is a variation of nearest

neighbor matching that attempts to avoid “bad” matches (those for which Pj is far from

Pi) by imposing a tolerance on the maximum distance kPi − Pjk allowed. That is, a match
for person i is selected only if kPi − Pjk < ε, j ∈ I0, where ε is a pre-specified tolerance.

For caliper matching, the neighborhood is C(Pi) = {Pj | kPi − Pjk < ε}. Treated persons
for whom no matches can be found (within the caliper) are excluded from the analysis.

Thus, caliper matching is one way of imposing a common support condition. A drawback of

caliper matching is that it is difficult to know a priori what choice for the tolerance level is

reasonable.

Stratification or Interval Matching In this variant of matching, the common support of

P is partitioned into a set of intervals. Within each interval, a separate impact is calculated

by taking the mean difference in outcomes between the D = 1 and D = 0 observations

within the interval. A weighted average of the interval impact estimates, using the fraction

of the D = 1 population in each interval for the weights, provides an overall impact estimate.

Implementing this method requires a decision on how wide the intervals should be. Dehejia

and Wahba (1999) implement interval matching using intervals that are selected such that
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the mean values of the estimated Pi’s and Pj’s are not statistically different from each other

within intervals.

Kernel and Local Linear matching More recently developed matching estimators con-

struct a match for each program participant using a weighted average over multiple persons in

the comparison group. Consider, for example, the nonparametric kernel matching estimator,

given by

α̂KM =
1

n1

X
i∈I1

⎧⎨⎩Y1i −
P

j∈I0 Y0jG
³
Pj−Pi
an

´
P

k∈I0 G
³
Pk−Pi
an

´
⎫⎬⎭ .

where G(·) is a kernel function and an is a bandwidth parameter.16 In terms of equation (8),
the weighting function, W (i, j), is equal to

G
Pj−Pi
an

k∈I0 G
Pk−Pi
an

. For a kernel function bounded

between -1 and 1, the neighborhood is C(Pi) = {|Pi−Pj
an

| ≤ 1}, j ∈ I0. Under stan-

dard conditions on the bandwidth and kernel , j∈I0 Y0jG
Pj−Pi
an

k∈I0 G
Pk−Pi
an

is a consistent estimator of

E(Y0|D = 1, Pi).
17

Heckman, Ichimura and Todd (1997) also propose a generalized version of kernel match-

ing, called local linear matching.18 The local linear weighting function is given by

W (i, j) =

Gij

P
k∈I0

Gik(Pk − Pi)
2 − [Gij(Pj − Pi)][

P
k∈I0

Gik(Pk − Pi)]

P
j∈I0

Gij

P
k∈I0

Gij(Pk − Pi)2 −
µP
k∈I0

Gik(Pk − Pi)

¶2 . (9)

As demonstrated in research by Fan (1992a,b), local linear estimation has some advantages

over standard kernel estimation. These advantages include a faster rate of convergence

near boundary points and greater robustness to different data design densities. (See Fan

(1992a,b).) Thus, local linear regression would be expected to perform better than ker-

nel estimation in cases where the nonparticipant observations on P fall on one side of the

participant observations.
16See Heckman, Ichimura and Todd (1997, 1998) and Heckman, Ichimura, Smith and Todd (1998),
17Specifically, we require that G(·) integrates to one, has mean zero and that an → 0 as n → ∞ and

nan →∞.
18Recent research by Fan (1992a,b) demonstrated advantages of local linear estimation over more standard

kernel estimation methods. These advantages include a faster rate of convergence near boundary points and
greater robustness to different data design densities. See Fan (1992a,b).

22



To implement the matching estimator given by equation (8), the region of common sup-

port SP needs to be determined. To determine the support region, Heckman, Ichimura and

Todd (1997) use kernel density estimation methods. The common support region can be

estimated by

ŜP = {P : f̂(P |D = 1) > 0 and f̂(P |D = 0) > cq},

where f̂(P |D = d), d ∈ {0, 1} are nonparametric density estimators given by

f̂(P |D = d) =
X
k∈Id

G

µ
Pk − P

an

¶
,

where an is a bandwidth parameter. To ensure that the densities are strictly greater than

zero, it is required that the densities be strictly positive density (i.e. exceed zero by a

certain amount), determined using a “trimming level” q. That is, after excluding any P

points for which the estimated density is zero, we exclude an additional small percentage of

the remaining P points for which the estimated density is positive but very low. The set of

eligible matches is therefore given by

Ŝq = {P ∈ ŜP : f̂(P |D = 1) > cq and f̂(P |D = 0) > cq},

where cq is the density cut-off level that satisfies:

sup
cq

1

2J

X
{i∈I1∩ŜP }

{1(f̂(P |D = 1) < cq + 1(1(f̂(P |D = 0) < cq} ≤ q.

Here, J is the cardinality of the set of observed values of P that lie in I1 ∩ ŜP . That is,

matches are constructed only for the program participants for which the propensity scores

lie in Ŝq.

The above estimators are straightforward representations of matching estimators and

are commonly used. The recent literature has developed some alternative, more efficient

estimators. See, for example, Hahn (1998) and Hirano, Imbens and Ridder (2003). In addi-

tion, Heckman, Ichimura and Todd (1998) propose a regression-adjusted matching estimator

that replaces Y0j as the dependent variable with the residual from a regression of Y0j on a
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vector of exogenous covariates. The estimator explicitly incorporates exclusion restrictions,

i.e. that some of the conditioning variables in the outcome equation do not enter into the

participation equation or vice versa. In principal, imposing exclusions restrictions can in-

crease efficiency. In practice, though, researchers have not observed much gain from using

the regression-adjusted matching estimator.

Difference-in-difference matching The estimators described above assume that after

conditioning on a set of observable characteristics, mean outcomes are conditionally mean

independent of program participation. However, for a variety of reasons there may be system-

atic differences between participant and nonparticipant outcomes, even after conditioning on

observables, that could lead to a violation of the identification conditions required for match-

ing. Such differences may arise, for example, because of program selectivity on unmeasured

characteristics, or because of levels differences in outcomes across different labor markets in

which the participants and nonparticipants reside.

A difference-in-differences (DID) matching strategy, as defined in Heckman, Ichimura

and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998), allows for temporally

invariant differences in outcomes between participants and nonparticipants. This type of

estimator is analogous to the standard differences-in-differences regression estimator defined

in Section 3.1, but it reweights the observations according to the weighting functions used

by the propensity score matching estimators defined above. The DID matching estimator

requires that

E(Y0t − Y0t0|P,D = 1) = E(Y0t − Y0t0|P,D = 0),

where t and t0 are time periods after and before the program enrollment date. This estimator

also requires the support condition given in (7), which must now hold in both periods t and

t0. The local linear difference-in-difference estimator is given by

α̂KDM =
1

n1

X
i∈I1∩SP

(
(Y1ti − Y0t0i)−

X
j∈I0∩SP

W (i, j)(Y0tj − Y0t0j)

)
,

where the weights correspond to the local linear weights defined above. If repeated cross-
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section data are available, instead of longitudinal data, the estimator can be implemented

as

α̂KDM =
1

n1t

X
i∈I1t∩SP

(
(Y1ti −

X
j∈I0t∩SP

W (i, j)Y0tj

)
− 1

n1t0

X
i∈I1t0∩SP

⎧⎨⎩(Y1t0i − X
j∈I0t0

W (i, j)Y0t0j

⎫⎬⎭ ,

where I1t, I1t0 , I0t, I0t0 denote the treatment and comparison group datasets in each time

period.

Finally, the DID matching estimator allows selection into the program to be based on

anticipated gains from the program, in the sense of assumption (A-3) described in section

1.3. That it, D can help predict the value of Y1 given P. However, the method assumes

that D does not help predict changes in the value of Y0 (Y0t− Y0t0) conditional on P. .Thus,

individuals who participate in the program may be the ones who expect the highest values

of Y1 , but they may not be systematically difference in terms of their changes in Y0.

3.2.3 Matching when the Data are Choice-based Sampled

The samples used in evaluating the impacts of programs are often choice-based, with program

participants oversampled relative to their frequency in the population of persons eligible for

the program. Under choice-based sampling, weights are generally required to consistently

estimate the probabilities of program participation.19 When the weights are unknown, Heck-

man and Todd (1995) show that with a slight modification, matching methods can still be

applied, because the odds ratio (P/(1− P )) estimated using a logistic model with incorrect

weights (i.e., ignoring the fact that samples are choice-based) is a scalar multiple of the true

odds ratio, which is itself a monotonic transformation of the propensity scores. Therefore,

matching can proceed on the (misweighted) estimate of the odds ratio (or of the log odds

ratio).20

19See, e.g., Manski and Lerman (1977) for discussion of weighting for logistic regressions.
20With nearest neighbor matching, it does not matter whether matching is performed on the odds ratio or

on the propensity scores (estimated using the wrong weights), because the ranking of the observations is the
same and the same neighbors will be selected either way. Thus, failure to account for choice-based sampling
will not affect nearest-neighbor point estimates. However, it will matter for kernel or local linear matching
methods, because these methods take into account the absolute distance between the P observations.
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3.2.4 When Does Bias Arise in Matching?

The success of a matching estimator depends on the availability of observable data to con-

struct the conditioning set Z, such that (5) and (6) are satisfied. Suppose only a subset

Z0 ⊂ Z of the variables required for matching is observed. The propensity score matching

estimator based on Z0 then converges to

α0M = EP (Z0)|D=1 (E(Y1|P (Z0), D = 1)−E(Y0|P (Z0),D = 0)) . (7)

The bias for the parameter of interest, E(Y1 − Y0|D = 1), is

biasM = E(Y0|D = 1)−EP (Z0)|D=1{E(Y0|P (Z0),D = 0)}.

3.2.5 Using Balancing Tests for Check the Specification of the Propensity Score
Model

As described earlier, the propensity score matching estimator requires that the outcome

variable is mean independent of the treatment indicator conditional on the propensity score,

P (Z). An important consideration in implemention is how to choose which variables to

include in estimating the propensity score. Unfortunately, there is no theoretical basis for

how to choose a particular set Z to satisfy the identifying assumptions. Moreover, the set

Z that satisfies the matching conditions is not necessarily the one the most inclusive one,

as augmenting a set that satisfies the identification conditions for matching could lead to

a violation of the conditions. Using more conditioning variables could also exacerbate a

common support problem.

To guide in the selection of Z, there is some accumulated empirical evidence on how bias

estimates of matching estimators depended on the choice of Z in particular applications. For

example, Heckman Ichimura Smith and Todd (1998), Heckman Ichimura and Todd (1999)

and Lechner (2001) show that which variables are included in the estimation of the propensity

score can make a substantial difference to the performance of the estimator. These papers

found that biases tended to be higher when cruder sets of conditioning variables where used.

26



These papers selected the set Z to maximize the percent of people correctly classified by

treatment status under the model.

Also, they found that the matching estimators performed best when the treatment and

control groups were were located in the same geographic area, so that regional effects on

outcomes were the same across groups. Lastly, they studied the performance of matching

estimators when a different survey instrument is used to collect the comparison group data

from that used to collect the treatment group data.21 They found that matching estimators

generally performed poorly when the survey instrument is not the same. They conclude

that matching estimators do not compensate for biases caused by differences in how variables

are measured across difference surveys, a purpose for which they were not designed. The

performance of matching method relies crucially on the data being of relatively high quality.

Rosenbaum and Rubin (1983) present a theorem that does not aid in choosing which

variables to include in Z, but which can help in determining which interactions and higher

order terms to include in the propensity score model for a given set of Z variables. The

theorem states that

Z⊥⊥D|Pr(D = 1|Z),

or equivalently

E(D|Z,Pr(D = 1|Z)) = E(D|Pr(D = 1|Z)).

The basic intuition is that after conditioning on Pr(D = 1|Z), additional conditioning on Z

should not provide new information about D. Thus, if after conditioning on the estimated

values of P (D = 1|Z) there is still dependence on Z, this suggests misspecification in the

model used to estimate Pr(D = 1|Z). Note that the theorem holds for any Z, including sets
Z that do not satisfy the conditional independence condition required to justify matching.

As such, the theorem is not informative about what set of variables to include in Z.

This result motivates a specification test for Pr(D = 1|Z). The general idea is to

21It is often the case in evaluation work that the comparison group data are collected using a different
survey instrument. (See Lalonde (1986), and Smith and Todd (200?)).
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test whether or not there are differences in Z between the D = 1 and D = 0 groups

after conditioning on P (Z). The test has been implemented in the literature a number

of ways. Eichler and Lechner (2001) use a variant of a measure suggested in Rosenbaum

and Rubin (1985) that is based on standardized differences between the treatment and

matched comparison group samples in terms of means of each variable in Z, squares of each

variable in Z and first-order interaction terms between each pair of variables in Z. An

alternative approach used in Dehijia and Wahba (1999,2001) divides the observations into

strata based on the estimated propensity scores. These strata are chosen so that there is not

a statistically significant difference in the mean of the estimated propensity scores between

the experimental and comparison group observations within each strata, though how the

initial strata are chosen and how they are refined if statistically significant differences are

found is not made precise. The problem of choosing the strata in implementing the balancing

test is analogous to the problem of choosing the strata in implementing the interval matching

estimator, described earlier. A common practice is to use five strata (e.g. quintiles of the

propensity score). Within each stratum, t-tests are used to test for mean differences in each

Z variable between the experimental and comparison group observations.

An alternative way of implementing the balancing test estimates a regression of each

element of the set Z, Zk on D interacted with a power series expansion in P (Z):

Zk = α+ β1P (Z) + β2P (Z)
2 + β3P (Z)

3 + ...+ βjP (Z)
j +

γ1P (Z)D + γ2P (Z)
2D + γ3P (Z)

3D + ...+ γjP (Z)
jD + ν,

and then tests whether the estimated γ coefficients are jointly insignificantly different from

zero.

When significant differences are found for particular variables, higher order and interac-

tion terms in those variables are added to the logistic model and the testing procedure is

repeated, until such differences no longer emerge.
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3.2.6 Assessing the Variability of Matching Estimators

Distribution theory for cross-sectional and difference-in-difference kernel and local linear

matching estimators is derived in Heckman, Ichimura and Todd (1998). However, imple-

menting the asymptotic standard error formulae can be cumbersome, so standard errors

for matching estimators are often instead generating using bootstrap resampling methods.22

A recent paper by Imbens and Abadie (2004a) shows that standard bootstrap resampling

methods are not valid for asessing the varibility of nearest neighbor estimators, although

their criticism does not apply for kernel or local linear matching estimators. Imbens and

Abadie (2004b) present alternative standard error formulae for assessing the variability of

nearest neighbor matching estimators.

3.2.7 Applications

Matching estimators have only recently been applied in evaluating the impacts of program

interventions in developing countries. In one of the early applications, Jyotsna and Ravaillon

(1999) use propensity score matching techniques to assess the impact of a workfare program

in Argentina (the Trabajar program) on the wages of individuals who took part in the

program. Their study finds sizable average wage gains due to the program. In another

application, Jyotsna and Ravaillon (2003) use propensity score matching methods to study

the effects of public investments in piped water in rural India on child health outcomes,

where the matching estimators are used to control for nonrandomness in which households

have access to piped water. Their study finds statistically significant impacts of having piped

water on reducing the prevalence and duration of diarrhea among children under five.23

Matching methods were also used in the 2005 large-scale evaluation of the urban Opor-

tunidades program in Mexico. The program is described in detail in chapter ? of this

handbook. Briefly, the Oportunidades program provides monetary subsidies to families for

22See Efron and Tibshirani (1993) for an introduction to boostrap methods, and Horowitz (2001 ) for a
recent survey of bootstrapping in econometrics.
23Upon more detailed examination of the distribution of treatment effects, however, Joytsna and Ravail-

lon (2003) also observe that the observed health gains largely bypass children from the poorest families,
particularly those where the mother is poorly educated.
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sending their children to school and for attending health clinics. The rural version of the

program was evaluated using a place-based randomized experiment, which randomized a set

of 506 villages in or out of the program. Because of high cost and out of ethical concerns, this

type of randomization was deemed infeasible in high density urban areas. The alternative

evaluation design adopted was a matched comparison group study. Matches for treatment

group households were drawn from two data sources: families living in intervention areas

who did not sign up for the program but who otherwise met the eligibility criteria, and

families who met the eligibility criteria for the program but who were living in areas where

the program was not yet available.24 The propensity score model was estimated using data

on program participants and nonparticipants living in intervention areas, and then used to

impute propensity scores for the families living in nonintervention areas. The scores repre-

sent the probability that these families would participate in the program if it were offered

to them. Program impact estimates were obtained using kernel and local linear regression

matching estimators with bootstrapped standard errors. The analysis of children and youth

age 6-20 indicated statistically significant program impacts on school enrollment, educational

attainment, dropout rates, employment and earnings of youth, and on the numbers of hours

spent doing homework.25

In another recent application of matching methods, Galiani, Gertler, and Schargrodsky

(2005) analyze effects of privatization of water services on child mortality in Argentina.

Variation of ownership in water provision over time provides a source of information that

can be used to identify the effect of privatization, but which municipalities privatized first

was nonrandom. To take into account unobserved municipality characteristics that may

affect the decision to privatize, Galiani, Gertler, and Schargrodsky (2005) use a difference-

in-difference kernel matching estimator. Their study finds that privatization of water services

significantly reduced child mortality, especially in the poorest areas.

Behrman, Cheng and Todd (2004) develop a modified version of a propensity score match-

24To participate in the program, families had to attend sign-up modules during a time period when the
modules were open.
25See Behrman, Garcia-Gallardo, Parker, and Todd, and Velez-Grajales (2005).
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ing estimator that they use to evaluate the effects of a preschool program in Bolivia on child

health and cognitive outcomes. Their approach identifies program effects by comparing

children with different lengths of duration in the program. Instead of controlling for selec-

tivity in program participation, as is usually done, their method controls for selectivity into

alternative program participation durations, conditional on having chosen to participate.

The estimator matches on the hazard rate and nonparametrically recovers the relationship

between program duration and magnitude of treatment impact.

Other applications of matching methods in the economic development literature are

Gertler, Levine and Ames (2004), in a study of the effects of parental death on child out-

comes, Lavy (2004), in a study of the effects of a teacher incentive program in Israel on

student performance, Angrist and Lavy (2001), in a study of the effects of teacher training

on children’s test scores in Israel, and Chen and Ravaillon (2003), a study of a poverty re-

duction project in China. There are numerous applications of matching estimators in the

job training literature, many of which are discussed in Heckman, Lalonde and Smith (1999).

3.3 Control Function Methods

Another class of evaluation estimators are control function methods, which are also known as

generalized residual methods. These methods were proposed as a solution to the evaluation

problem in Heckman and Robb (1986).26 Like the regression estimators discussed in section

3.1, they are usually defined within the context of an econometric model for the outcome

process. Control function esitmators explicitly recognize that nonrandom selection into

the program gives rise to an endogeneity problem in the model and try to obtain unbiased

parameter estimates by modeling the source of the endogeneity. In contract, the matching

estimators discussed in the previous section assume that selection on unobservables is not a

problem after conditioning on a set of observed covariates.27

To see how the generalized residual method applies to the evaluation problem, write the

26The methods build on earlier selection bias correction methods developed in Heckman (1976, 1979, 1980).
27Or after taking differences in outcomes and conditioning on observed covariates, in the case of difference-

in-difference matching.
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model for outcomes as

Y = ϕ0(X) +Dα∗(X) + ε̃,

where

α∗(X) = E(Y1 − Y0|X,D = 1) = ϕ1(X)− ϕ0(X) +E(U1 − U0|X,D = 1)

is the parameter of interest (TT(X)) and

ε̃ = U0 +D(U1 − U0 − E(U1 − U0|X,D = 1)).

Because the decision to participate may be endogenous with respect to the outcomes, we

might expect thatE(U0|X,D) 6= 0, i = 0, 1. Heckman (1976,1979) showed that the endogene-
ity problem can be viewed as an error in model specification analogous to the problem of omit-

ted variables. By adding and subtractingE(U0|X,D) = DE(U0|D = 1, X)+(1−D)E(U |D =

0,X), we can rewrite the outcome model as

Y = ϕ0(X) +Dα∗(X) +E(U |D = 0, X) + (8)

D[E(U0|D = 1, X)− E(U0|D = 0,X)] + ε

= ϕ0(X) +Dα∗(X) +K0(X) +D[K1(X)−K0(X)] + ε

where

ε = D{U0 − E(U0|D = 1,X)}+ (1−D){U0 −E(U0|D = 0, X)}
+ D{U1 − E(U1|D = 1,X)}

By construction, the residual ε has conditional mean equal to 0. The functions K1(X) and

K0(X) are termed “control functions." When these functions are known up to some finite

number of parameters, they can be included in the model to control for the endogeneity and

regression methods (either linear or nonlinar) applied to consistently estimate program.

3.3.1 Econometric Methods for Estimating Control Functions

If no restrictions where placed on either α∗(X), K1(X), or K0(X), then the treatment im-

pact parameter could not be separately identified from the control functions. Therefore,
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some identifying restrictions are necessary. Different implementations of control function

estimators in the literature impose different types of restrictions. Usually, they consist of

functional form restrictions and/or exclusion restrictions. In this context, exclusion restric-

tions are requirements that some variables that determine the participation process (i.e. the

equation for D) be excluded from the outcome equation. These excluded variables gener-

ate variation in K1(X) and K0(X) that is independent from α∗(X). The following types

of restrictions could be imposed: (1) functional form restrictions on α∗(X) and on K1(X)

and K0(X) without exclusion restrictions; (2) Exclusion restrictions without functional form

assumptions; (for example, if all the regressors in the outcome and participation equations

were mutually exclusive and linearly independent) and (3) a combination of functional form

and exclusion restrictions.28

Heckman and Robb (1986) motivate particular functional form restrictions on Kd(X),

d ∈ {0, 1}, through an economic model of the participation process. Participation is assumed
to depend on characteristics Z through an index h(Zγ) and on unobservable characteristics

V as follows:

D =

½
1 if h(Zγ) + V > 0

0 if h(Zγ) + V ≤ 0 .

In a random utility framework, h(Zγ) + V represents the net utility from participating in a

program. (McFadden, 1981, and Manski and McFadden, 1981).

Under this model, the function K0(X) = E(U0|D = 1,X) can be written as

E(U0|D = 1, X) = E(U0|h(Zγ) + V > 0,X)

=

R∞
−h(Zγ)

R∞
−∞ uf(u, v|X)dudvR∞

−h(Zγ)
R∞
−∞ f(u, v|X)dudv .

If F (U0, V |X) is assumed to be continuous with full support in R2 and FV (·) is invertible,
28There is also another source of identification considered in the econometric evaluation literature called

"identification at infinity." (See Heckman, 1979, Andrews and Schafgans, 1998). This type of identification
is possible when there is a subgroup in the data for which Pr(D = 1|Z) = 1 for some set Z, meaning that
individuals with that set of characteristics always select into the program and there is no selection problem
for them. This subgroup can be used to identify some of the model parameters that are not otherwise
identified.
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then the index Zγ can be written as a function of the conditional probability of participation.

Pr(D = 1|Z) = Pr(V > −h(Z; γ))
= 1− FV (−h(Z; γ)).
=⇒ h(Z; γ) = −F−1v (−Pr(D = 1|Z))

Heckman and Robb (1986) note that if we make the additional assumption that the joint

distribution of the unobservables, U0 and V , does not depend on X, except possibly though

the index, h(Z; γ), i.e.

f(U0, V |X) = f(U0, V |h(Z; γ)),

then E(U0|D = 1,X) can be written as a function of the probability of participating in the

program, Pr(D = 1|Z), and D and no other variables:

E(U0|D = 1,X) = E(U0|D = 1, P (Z)) = K1(P (Z))

E(U0|D = 0,X) = E(U0|D = 0, P (Z)) = K0(P (Z)).
29

Assuming that a linear index is sufficient to represent the bias control function (so-

called index sufficiency) greatly simplifies the problem of estimating the Kd(X), d ∈ {0, 1}
functions. It also helps the identification problem. For example, suppose ϕ0(X) and h(Zγ)

were both linear in the regressors. Then, under the index assumption, we can allow for

overlap between X and Z, as long as there is at least one continuous variable included in Z

excluded from X and no combination of X is a function of the Z.(Cosslett, 1984)

In the original formulation of the control function method in Heckman (1976, 1979),

it was assumed that U0 and V were jointly normal which implies a parametric form for

K1(P (Z)) and K0(P (Z)). In Heckman, Ichimura, Smith and Todd (1996), the index suffi-

ciency assumption is invoked and the K(·) functions are estimated nonparametrically as a
function of the probability of participating in the program. 30

30In that study, estimates of the probabilities of participating in the program (the propensity scores) are
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3.3.2 A Comparison of Control Function and Matching Methods

Control function and matching methods were developed largely in separate literatures in

econometrics and statistics, but the two methods are related and both make use of propensity

scores in implementation. Conventional matching estimators can in some cases be viewed as

a restricted form of a control function estimator. Recall that traditional matching methods

assume that selection is on observables, whereas control function methods explicitly allow

selection into programs to be on the basis of observables Z or on unobservables V . Assume

the model for outcomes given in (1). The assumption that justifies matching outcomes on

the basis of Z characteristics is

E(Y0|D = 1, Z) = E(Y0|D = 0, Z).

If X ⊂ Z, then, in the context of the outcomes model above, this assumption is implies

that31

E(U0|D = 1, Z) = E(U0|D = 0, Z).

Under the control function approach, this assumption is equivalent to assuming that the

control functions are equal for both the D = 0 and D = 1 groups

K1(P (Z))−K0(P (Z)) = 0, (9)

in which case the model for outcomes can be written as

Y0 = ϕ0(X) +Dα∗(X) +K0(P (Z)) +D{U1 − U0 −E(U1 − U0|D = 1, X)}.

In the literature, assumption (9) is referred as the special case of “selection on observables.”

(see Heckman and Robb, 1986; Heckman, Ichimura, Smith and Todd, 1995; and Barnow,

Cain and Goldberger, 1980).

first obtained by a discrete choice model and then control functions are estimated nonparametrically using
the predicted probabilities. That paper also develops a test for index sufficiency and finds that it cannot be
rejected for a data sample of adult male applicants to the U.S. JTPA (Job Training and Partnership Act)
program.
31See Heckman,Ichimura, Todd (1996a,b) for the more general case where Z contains variables not in X.

35



When selection is of this form, many of the identification problems that arise in trying to

separate the treatment impact α∗(X) from the bias function K1(X) go away. That is, α∗(X)

could be estimated without imposing functional form restrictions or exclusion restrictions.

The functions ϕ0(X) and K0(P (Z)) cannot be separately identified without additional re-

strictions, but if the goal of the estimation is to recover treatment impacts then there may

be no need to separately identify these functions. As seen in the previous section, matching

estimators recover E(Y0|D,X) directly with any attempt to separate the different compo-

nents and without restrictions on the functional form of the conditional mean of the outcome

equation.

In traditional implementations of the control function method, it is common to assume

that (U0, V ) are joint normally distributed. Under the normal model, the restriction that

K0(P (Z)) = K1(P (Z)) will, in general, not be satisifed unless the errors have zero covariance,

σU0V = 0. To see why that is the case, note that under joint normality

E(U0|D = 1, Z) = K1(P (Z)) =
σU0V
σV 2

φ(−h(Zγ))
1− Φ(−h(Zγ))

E(U0|D = 0, Z) = K0(P (Z)) =
σU0V
σV 2

−φ(−h(Zγ))
Φ(−h(Zγ)) .

Thus, K1(P (Z)) equals K0(P (Z)) only if σU0V = 0.

3.3.3 Applications

Control function methods are not widely used in evaluating development programs. For dis-

cussion of their application in the context of evaluating job training programs, see Heckman,

Lalonde and Smith (1999).

3.4 Instrumental Variables, Local Average Treatment Effects (LATE),
and LIV Estimation

In this section, we consider the application of instrumental variables estimators for estimating

program effects.
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3.4.1 The Wald Estimator

We consider again the treatment effect model of the previous section:

Y = ϕ0(X) +Dα∗(X) + ε̃,

where

α∗(X) = E(Y1 − Y0|X,D = 1) = α(X) +E(U1 − U0|X,D = 1)

is the parameter of interest (TT) and

ε̃ = U0 +D(U1 − U0 − E(U1 − U0|X,D = 1)).

Suppose that there is an exclusion restriction, a variable Z that affects the program par-

ticipation decision but does not enter into the outcome equation. Also, for simplicity of

exposition, assume that the conditioning variables X and that the instrument Z is binary

and takes on the values Z1 and Z2. We first partition the dataset by X and then use the

instrument to estimate the program effect using the method of instrumental variables. The

identifying assumption is that

E(U0|X,Z) = E(U0|X).

The so-called Wald estimator (applied within X strata) is given by

α̂∗IV (X) =
Ê(Y |Z = Z1,X)− Ê(Y |Z = Z2,X)

Ê(D|Z = Z1,X)− Ê(D|Z = Z2,X)

=
Ê(Y |Z = Z1, X)− Ê(Y |Z = Z2, X)cPr(D = 1|Z = Z1, X)−cPr(D = 1|Z = Z2,X)

,

where the denominator is the difference in the probability of participating in the program

under the two different values of the instrument. As noted in Heckman (1992), the estima-

tor α̂∗(X) recovers the effect of treatment on the treated, α∗IV (X), only under one of two

alternative assumptions on the error term:

Case I: U1 = U0
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or

Case II: U1 6= U0 and E(U1 − U0|X,Z,D = 1) = E(U1 − U0|X,D = 1).

In the first case, the average impact of treatment on the treated (TT) is assumed to

be the same as the average treated effect (ATE). Under the second case, the ATE and

TT parameters differ, but the instrument does not forecast the idiosyncratic gain from

the program. Heckman (1992) provides several examples where the assumption that the

instrument does not help forecast the program gain may be problematic. Whether such an

assumption is tenable or not will depend on the particular application at hand.

If assumptions I or II are not satisfied, then the Wald estimator can no longer be in-

terpreted as estimating the average effect of treatment on the treated. Nonetheless, it has

an alternative interpretation as a Local Average Treatment Effect (See Imbens and Angrist,

1994), which is the average effect of treatment for the subset of persons induced by the change

in the instrument to receive the treatment. In the above example, the LATE estimator gives

the average treatment impact for the subset of individuals who would not get treatment if

Z = Z2 but do get treatment if Z = Z1. These are people who are induced to change their

treatment status by the value of the instrument. The LATE parameter is further discussed

below.

3.4.2 Marginal Treatment Effects (MTE) and Local Instrumental Variables
(LIV) Estimation and its Relationship to TT, ATE, LATE

Recent advances in the program evaluation literature have led to a better understanding of

the relationship between the TT, ATE and LATE parameters. Heckman and Vytlacil (2005)

develop a unifying theory of how the different parameters relate to one another using a new

concept, called a marginal treatment effect (MTE). Here, we summarize some key points

of their argument. Consider the treatment effect model of the previous sections, written in

slightly more general form, where there is again an outcome equation and a participation

equation:
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Yi = DiY1i + (1−Di)Y0i

Y1i = µ1(Xi, U1i)

Y0i = µ0(Xi, U0i)

Di = 1 if µ0(Zi)− UDi ≥ 0

It is assumed that µ0(Zi) is nondegenerate conditional on Xi, so that there is variation

in who participates in the program holding Xi constant. The error terms are assumed

to be independent of Zi conditional on Xi.32 As before, denote the propensity score as

P (Z) = Pr(D = 1|Z = z) = FUD(µ0(Zi)) and assume that there is full support (0 < Pr(D =

1|Z) < 1). Heckman and Vytlacil (2005) show that without loss of generality, one can assume
UDi distributed uniformly. Suppose that

Di = 1 if ϕ(Zi)− v ≥ 0

so that

Pr(v < c) = FV (c).

Since FV (·) is a monotone transformation of the random variable v, we have

Pr(FV (v) < FV (c)) = FV (c).

Define UDi = FV (v). Because Pr(UDi < t) = t, UDi is uniformly distributed between 0 and

1.

Next, note that when UDi is uniformly distributed,

E(D|Z) = Pr(D = 1|Z) = FUD(µ0(Zi)) = µ0(Zi).

Let Z and Z 0 be two values of the instrument such that Pr(D = 1|Z) < Pr(D = 1|Z 0). The
threshold crossing model of program participation implies that some individuals who would

32See Heckman and Vytlacil (2005) for other technical conditions that are not central to the argument
here.
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have chosen D = 0 with Z = Z will chose instead D = 1 when Z = Z 0 , but no individual

with D = 1 when Z = Z would choose D = 0 when Z = Z 0.33

Using this framework, we can define different parameters of interest:

(i) The average treatment effect (ATE) is given by ∆ATE(X) = E(∆|X = x)

(ii) The average effect of treatment on the treated, conditional on a value of P (Z), is

given by ∆TT (X,P (Z), D = 1) = E(∆|X = x, P (z) = P (Z), D = 1)

(iii) The marginal treatment effect (MTE) conditions on a value of the unobservable:

MTE = ∆MTE(X) = E(∆|X = x,UD = u)

(iv) The local average treatment effect (LATE) parameter is given by

LATE=∆LATE(X,P (Z), P (Z 0)) = E(Y |P (Z)=P (Z),X)−E(Y |P (Z)=P (Z0),X)
P (Z)−P (Z0) .

The MTE is a new concept that Heckman and Vytlavil (2005) introduced. If UD = P (Z),

then the index µ0(Zi) − UDi = 0 (by the above reasoning, µ0(Zi) = P (Z) when UDi is

uniformly distributed). People with the index equal to zero have unobservables that make

them just indifferent between participating or not participating in the program. People

with UDi = 0 have unobservables that make then most inclined to participate, while people

with UDi = 1 have unobservables that make them the least inclined to participate.

Heckman and Vytlacil (2005) show that all the parameters of interest can be written in

terms of the marginal treatment effect ∆MTE(X) as follows:

∆TT (X) =

R P (Z)
0

E(∆|X = x,UD = u)dUD

P (Z)

∆TT (X) =

Z 1

0

E(∆|X = x,UD = u)dUD

∆LATE(X,P (Z), P (Z 0)) =

R P (Z)
P (Z0)E(∆|X = x,UD = u)dUD

P (Z)− P (Z 0)

That is, each of the parameters of interest can be written as an average of ∆MTE(X)

for values of UD lying in different intervals. This result implies that knowledge of the MTE

33As shown in Vytlacil (2002), the assumptions required to justify a threshold crossing model are the same
as the monotonocity conditions typically assumed to justify application of LATE estimators, proposed in
Imbens and Angrist (1994).
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function enables computation of all the other parameters of interest. However, the MTE

function depends on a value of an unobservables, raising the question of how to estimate

the MTE function. Heckman and Vyltacil (2005) propose an following estimation strategy

that is implementable when the researcher has access to a continuous instrumental variable,

Z, that enters into the participation equation but not the outcome equation. First, define a

local instrumental variables estimator as

∆LIV (X,P (Z)) =
∂E(Y |P (Z) = P (Z), X)

∂P (Z)

= lim
P (Z0)−>P (Z)

E(Y |P (z) = P (Z), x = X)−E(Y |P (z) = P (Z 0), x = X)

P (Z)− P (Z 0)
= MTE(X,UD = P (Z)).

The ∆LIV (X,P (Z)) parameter can be obtained by (i) estimating the program participation

(propensity score) model to get P̂ (Z), and then (ii) estimating ∂E(Y |P (Z)=P (Z),X)
∂P (Z)

nonpara-

metrically (which can be done by local linear regression). Step (i) can be carried out using

a parametric, semiparametric or nonparametric estimator for the binary choice model. Step

(ii) can be performed by local linear regression of the outcome (Y = DY1+(1−D)Y0) on the
estimated P̂ (Z). Evaluating this function for different values of P (Z) traces out the MTE

function. The different estimands TT, ATE, LATE can be obtained by integrating under

the MTE function.

3.4.3 Applications

LIV estimators have only been recently developed, and there are thus far no applications

to evaluating effects of program interventions in developing country settings. For a recent

application to estimating returns to education using U.S. data, see Carniero, Heckman and

Vytlacil (2001).

3.5 Regression-Discontinuity Methods

Sometimes, in evaluating effects of a program intervention, there is information available

on the rule generating assignment of individuals into treatment. For example, suppose that
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individuals who apply to the program are assigned a program eligibility score (based on

their characteristics) and that only individuals with a score below a threshold are allowed

to enter the program. This type of data design was first considered in Thistlethwaite and

Campbell (1960) in an application in which they estimated the effect of receiving a National

Merit Scholarship Award has on students’ success in obtaining additional college scholarships

and on their career aspirations. They observed that the awards are given on the basis of

whether a test score exceeds a threshold, so one can take advantage of knowing the cut-

off point to learn about treatment effects for persons near the cut-off. 34 The defining

characteristic of regression discontinuity (RD) data designs is that the treatment variable

changes discontinuously as a function of one or more underlying variables.

In the evaluation literature, there are several papers considering identificiation of treat-

ment effects under a RD data design along with different kinds of assumptions on the process-

ing governing the outcome variables and on the distribution of treatment effects. Trochim

(1984) discusses alternative parametric and semiparametric RD estimators that have been

proposed in the statistics literature. Van der Klaauw (1996) considers identification and

estimation in a semiparametric model under a constant treatment effect assumption. Hahn,

Todd and Van der Klaauw (2000) consider a more general case that allows for variable treat-

ment effects and that imposes weak assumptions on the distribution (or conditional mean

function) of the outcome variables. The discussion below follows along the lines of the Hahn

et. al. (2000).

Suppose that the goal of the evaluation is to determine the effect that some binary

treatment variable Di has on an outcome Yi. The model for the observed outcome can be

written as

Yi = Y0i +Di ·∆i, (10)

If the data are purely observational (or nonexperimental), then little may be known a priori

about the process by which individuals are selected into treatment. With data from a RD

34Other applications of the regression-discontinuity methods include Berk and Rauma (1983), Van der
Klaauw (1996), Angrist and Lavy (1996), and Black (1996).
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design, the analyst has some information about the treatment assignment mechanism.

There are two main types of discontinuity designs considered in the literature - the

sharp design and the so-called fuzzy design (see e.g. Trochim, 1984). With a sharp design,

treatment Di is known to depend in a deterministic way on some observable variable Zi,

Di = f (Zi), where Z takes on a continuum of values and the point z0 where the function

f (Z) is discontinuous is assumed to be known.

With a fuzzy design, Di is a random variable given Zi, but the conditional probability

f (Z) ≡ E [Di|Zi = z] = Pr [Di = 1|Zi = z] is known to be discontinuous at z0.35 Next we

consider formally why knowing that the probability of receiving treatment changes discontin-

uously as a function of an underlying variable is a valuable source of identifying information.

3.5.1 Identification of Treatment Effects under Sharp and Fuzzy Data Designs

Sharp Design To simplify the exposition, consider the special case of a sharp discontinuity

design. Treatment is assigned based on whether Zi crosses a threshold value z0:

Di = 1 if Zi > z0

= 0 if Zi ≤ z0.

As z may be correlated with the outcome variable, the assignment mechanism is clearly not

random and a comparison of outcomes between persons who received and did not receive

treatment will generally be a biased estimator of treatment impacts. However, we may have

reason to believe that persons close to the threshold z0 are similar. If so, we may view the

design as almost experimental near z0.

To make ideas concrete, let e > 0 denote an arbitrary small number. Comparing condi-

tional means for persons who received and did not receive treatment gives

E [Yi|Zi = z0 + e]−E [Yi|Zi = z0 − e] = E [∆i|Zi = z0 + e]

+E [Y0i|Zi = z0 + e]−E [Y0i|Zi = z0 − e] .

35For example, in the application of Van der Klaauw (1996), the probability that a student receives financial
aid changes discontinuously as a function of a known index of the student’s GPA and SAT scores. However,
there are other factors, some of which are unobserved, which affect the financial aid decision, so the data fits
a fuzzy rather than a sharp design.
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When persons near the threshold are similar, we would expectE [Y0i|Zi = z0 + e] ∼= E [Y0i|Zi = z0 − e].

This intuition motivates the following assumptions:

RD-1: E [Y0i| zi = z] is continuous in Z at z0.36

RD-2 The limit lime→0+ [∆i|Zi = z0 + e] is well defined.

Under Conditions (RD-1) and (RD-2), it is easy to see that

lim
e→0+

{E [Yi|Zi = z0 + e]−E [Yi|Zi = z0 − e]} = E [∆i| z0] . (11)

By comparing persons arbitrarily close to the point z0 who did and did not receive treatment,

we can in the limit identify E [∆i| zi = z0], which is the average treatment effect for people

with values of Zi at the point of discontinuity z0. Conditions (RD-1) and (RD-2) are all that

is required for identification.

It is a limitation of a RD design that we can only learn about treatment effects for persons

with z values near the point of discontinuity. Sometimes, however, the treatment effects near

the boundary are of particular interest, for example, if the policy change being considered

were that of expanding the cut-off.

Fuzzy Design The fuzzy design differs from the sharp design in that the treatment assign-

ment is not a deterministic function of zi, because there are additional unobserved variables

that determine assignment to treatment. The common feature it shares with the sharp de-

sign is that the probability of receiving treatment (the propensity score), Pr [Di = 1|Zi],

viewed as a function of zi, is discontinuous at z0. As shown in Hahn, Todd and Van der

Klaauw (2000), mean treatment effects can be identified even under a fuzzy design under

different some assumptions on the heterogeneity of impacts.

Common Treatment Effects Suppose that the treatment effect is constant across

different individuals and is equal to ∆.The mean difference in outcomes for persons above

and below the discontinuity point z0 is

∆ · {E [Di|Zi = z0 + e]−E [Di|Zi = z0 − e]}+E [Y0i|Zi = z0 + e]−E [Y0i|Zi = z0 − e] .

36It is assumed that the density of Zi is positive in the neighborhood containing z0.
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Under (RD-1), we have

lim
e→0+

E [Yi|Zi = z0 + e]−E [Yi|Zi = z0 − e] = ∆· lim
e→0+

{E [Di|Zi = z0 + e]−E [Di|Zi = z0 − e]} .

Thus, we can identify ∆ by the ratio

lime→0+ E [yi| zi = z0 + e]− lime→0+ E [yi| zi = z0 − e]

lime→0+ E [xi| zi = z0 + e]− lime→0+ E [xi| zi = z0 − e]
. (12)

The denominator is nonzero because the fuzzy RD design guarantees that Pr [Di = 1| zi = z]

(the propensity score) is discontinuous at z0.

Variable Treatment Effects Now suppose treatment effects are heterogeneous, and

in addition to assumptions (RD-1) and (RD-2), we assume

RD-3: Di is independent of ∆i conditional on Zi near z0: Di ⊥ ∆i|Zi = z0

Then the same ratio identifies E(∆i|Zi = z0). In addition to the cases considered above,

Hahn et. al. (2000) also consider an alternative local average treatment effect (LATE)

interpretation of the same ratio.37

3.5.2 Estimation

We next describe an estimation approach proposed in Hahn et. al. (2000).38 For both

the sharp design and fuzzy design, (12) identifies the treatment effect at z = z0. Thus,

given consistent estimators of the four one-sided limits in (12), the treatment effect can be

consistently estimated. One simple nonparametric estimator would estimate the limits by

37Extending the idea of Imbens and Angrist (1994) or Angrist, Imbens, and Rubin (1994) to the RD design,
the ratio gives the average impact for people induced to receive treatment by whether the instrument is above
or below the cut-off z0.
38One estimation approach proposed by van der Klaauw (1996) for the sharp design is to assume (in

addition to continuity) a flexible parametric specification for g(Z) = E [Y0i| zi] and add this as a ‘control
function’ to the regression of Yi on Di. For the fuzzy design he proposes a similar approach but where Di in
the control function-augmented regression equation is now replaced by a first stage estimate of E [Di|Zi].
This estimation approach is consistent under correct specification but can be sensitive to misspecification.
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averages over the Yi values and the Di values within a specified distance of the boundary

points (the bandwidth). Let ∆̂ denote an estimator for the treatment impact

∆̂ =
ŷ+ − ŷ−

x̂+ − x̂−
,

where ŷ+, ŷ−, x̂+, and x̂− are estimators for each of the limit expressions. Given appropriate

bandwidths h+ and h−, we would estimate the limits by

ŷ+ =

P
i Yi · 1 (z0 < Zi < z0 + h+)P

i 1 (z0 < Zi < z0 + h+)
, ŷ− =

P
i Yi · 1 (z0 − h− < Zi < z0)P

i 1 (z0 − h− < Zi < z0)
,

and

x̂+ =

P
iDi · 1 (z0 < Zi < z0 + h+)P

i 1 (z0 < Zi < z0 + h+)
, x̂− =

P
iDi · 1 (z0 − h− < Zi < z0)P

i 1 (z0 − h− < Zi < z0)
.

The RD estimator can also be implemented using local linear regression methods, as

proposed in Hahn et. al. (2000), which have have better performance than simple averaging

methods or kernel methods at boundary points.(See Fan, 1992)39 For this problem, all the

estimation points are boundary points.

3.5.3 Applications of RD Methods

Regression-discontinuity methods have only rarely been used in the evaluation of social

programs in developing country settings. Buddelmeier and Skoufias (2004) study the per-

formance of RD methods using data from the Mexican PROGRESA experiment.40 As

discussed in section 3.2, the PROGRESA program was a school and health subsidy program

introduced by the Mexican government in rural areas. The experiment randomized villages

in and out of the program. Within each village, only families who were eligible for the pro-

gram according to an eligibility index were allowed to participate in it, where the index was

derived from poverty criteria, such as whether the family had a dirt floor or a bathroom in

their home. Most families deemed eligible for the program decided to participate in it to

some extent.
39Boundary points are points within one bandwidth of the boundary. See Härdle (1990) or Härdle and

Linton (1994) for discussion of the boundary bias problem.
40This experiment is described in detail in Chapter ? of this handbook.
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Buddelmeier and Skoufias (2004) observe that families with eligibility index values just

above the cut-off who received the program are highly similar to families with eligible values

just below the cut-off. The criteria for eligibility were not made public, which alleviates

concerns that households could have manipulated their poverty status to become eligible for

the program.41 Using a RD estimation approach, Buddlemeier and Skoufias (2004) calculate

program impacts for the households near the eligibility cut-off by comparing households

living in treated communities with scores just above and below the cut-off. Their results

show that the estimates based on the RD method are close to those observed from the

experiment, lending credibility to the RD approach. Moreover, most of the households

in their sample have scores near the cut-off values, making the sample near the cut-off an

interesting subsample to study.

In another application, Lavy (2004) uses an RD estimator to evaluate the effects of a

teacher incentive program on student performance. The program introduced a rank-order

tournament (among teachers of English, Hebrew, and mathematics in Israel) that rewarded

teachers with cash bonuses for improving their students’ performance on high-school ma-

triculation exams. The regression discontinuity method of Lavy (2004) exploits both a nat-

ural experiment stemming from measurement error in the assignment variable and a sharp

discontinuity in the assignment-to-treatment variable. The results show that performance

incentives significantly affect students in the treatment group, with some minor spillover

effects on untreated subjects. A recent study by Chay, McEwan, and Urquiola (2005) also

evaluates the effects of an incentive program using a RD design. The program is a school

resource program in Chile that awards resources to schools based on cut-offs in the school’s

test scores. Their results indicate that the program had statistically significant effects on

test score gains.

41If households were selecting nonrandomly into the program around the cut-off, then this could invalidate
the assumption RD-1.
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4 Ex Ante Program Evaluation

Thus far, we have considered the problem of evaluating effects of existing programs. All of

the evaluation methods described in the previous sections require access to data on program

participants, which would typically be available in an ex post evaluation. However, policy

makers are sometimes interested in evaluating effects of possibly a range of programs before

deciding which type of program to implement. For example, the goal may be to (i) to

optimally design a social program to achieve some desired effects, (ii) to forecast the take-up

rates of alternative programs, or (iii) to study the effectiveness of alternatives to an existing

program. Evaluating effects of programs that do not yet exist requires an evaluation method

that makes use only of data on people who have not participated in the program. Answering

question (iii) requires a way of extrapolating from experience with an existing program to a

range of alternative programs.

The problem of forecasting the effects of social programs is part of the more general

problem of studying the effects of policy changes prior to their implementation that was

studied by Marshak (1953). He described it as one of the most challenging problems facing

empirical economists. In the early discrete choice literature, the problem appeared as the

"forecast problem," whereby researchers were trying to predict the demand for a new good

prior to its being introduced into the choice set. For example, McFadden (1977) used a

discrete choice random utility model to forecast the demand for the San Francisco BART

subway system prior to its being built.

There are a few empirical studies that study the performance of economic models in

forecasting program effects by comparing models’ forecasts of treatment effects to those

estimated experimentally. For example, Wise (1985) develops and estimates a model of

housing demand that he uses to forecast the effects of a housing subsidy. The housing

subsidy program was implemented as a randomized experiment, so he is able to compare

forecasts he obtains from alternative models models to the experimental subsidy effects.

In a more recent application, Todd and Wolpin (2004) develop and estimate a dynamic
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behavioral model of family decision making about child schooling and fertility that they use

to forecast the effects the PROGRESA program (see section 3.4) on choices about children’s

schooling and work and on family fertility.42 Todd and Wolpin (2004) compare the model’s

predictions about program impacts to those observed under the randomized experiment.

They find that the model provides relatively accurate forecasts of program effects on school

enrollment and child work patterns. They then use the model to evaluate the take-up rates,

costs and program effects of a variety of counterfactual programs, such as changes to the

subsidy schedule (how the subsidy varies by gender and grade). Lastly, they use the model

to evaluate effects of some radically different programs, such as an income subsidy program

that removes the school attendance requirement.

To illustrate how a behavioral model can be used to predict the impacts of a program

that has not been implemented, we next describe a simple model of schooling choice that

shows how the effects of a school subsidy program can potentially be identified even when

none of the families in the data receives a subsidy. This example generalizes an example in

Todd and Wolpin (2004).

4.1 An Illustrative Model of Identification of Subsidy Effects

Consider a household making a single period decision about whether to send a single child

to school or to work. Let the utility of the household be separable in consumption (C) and

school attendance (s), namely u = C +(α+ ε)s, where s = 1 if the child attends school, = 0

otherwise and ε is a preference shock. Assume that the cost of attending schoo depends on

distance to the school, denoted k. Children who work contribute to family income, so the

family’s income is y + w(1− s)− δks, where y is parent’s income, w is the child’s earnings,

and δks is the distance cost that is only incurred if the child attends school. Under utility

maximization, the family chooses to have the child attend school if ε > w − α+ σk.

Suppose that wages are only onserved for children who work and specify a child wage

42The PROGRESA program is described in detail in chapter ? of this handbook.
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offer equation:

w = zγ + v

where z are characteristics (such as age or sex) that are determinants of wage offers and are

observed for all children. The equation governing whether a family sends a child to school

or work is

s = 1 if α− δk + ε > zγ + v, else s = 0.

The probability that a child attends school can be written as

Pr(s = 1|z) = Pr(zγ − α+ δk < ε− ν)

= Fε−v(zγ − α+ δk),

where Fε−v(·) is the cdf of ε−ν. Under an assumption that the median of ε−ν is 0 conditional
on z, the parameters γ, α and δ can be estimated up to scale by either a parametric or

semiparametric discrete choice estimation method.43

Next, consider estimation of the child wage offer equation only using data on children

who work (s = 0) for whom wages are observed. We can write the wage equation as

y = zγ +E(ν|z, s = 0) + {ν − E(ν|z, s = 0)},

where the error term in brackets (η = ν − E(ν|z, s = 0)) has conditional mean zero by

construction.

As described in section 3.3, we can consistently estimate the parameter γ by including a

control function to capture E(ν|z, s = 0).44 Under the assumption that (i) v and ε are jointly
distributed with density f(ν, ε) and (ii) the conditional density equals the unconditional

density, f(v, ε|z, k) = f(ν, ε), as described along in section 3.3, we obtain

w = zγ +K(P ) + η,

where P is the probability of working. If there is a continuous exclusion restriction that

affects the work decision but not the wage offer equation (in this case, the distance variable

43See Manski, 1988.
44Also, see Heckman (1980).
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k), then the parameter γ can be nonparametrically identified under very weak assumptions

on theK function.45 To see why, note that an exclusion restriction allows us to hold constant

z at some value and vary P , thereby tracing out the K function. Then, fixing K at some

value, we can estimate γ.46 Once γ is identied, we can use the results of the discrete choice

estimation to obtain α and δ.47

Next, we examine how the estimated model can be used for ex-ante evaluation. Suppose

that the government is contemplating a program to increase school attendance of children

though the introduction of a subsidy to parents in the amount b if they send their child

to school. Under such a program, the probability that a child attends school will increase

by Fε−v(zγ − α − b + δk) − Fε−v(zγ − α + δk). The function Fε−v(s) can be estimated

nonparametrically by a nonparametric regression of the school attendance indicator, s, on

zγ̂− α̂+ δ̂k .48 To assess the effect of the subsidy on the probability of attending school, we

simply evaluate the Fε−v(s) function at the point zγ̂ − α̂+ δ̂k.

5 Conclusions

A common problem in evaluating the effects of program interventions using nonexperimental

data is that the program recipients may differ in systematic ways from nonrecipients. Such

differences may arise either because the programs are nonrandomly placed, are targeted at

certain groups of people, or because individuals self-selected into the program. Of course,

all three of these factors may occur simultaneously, posing challenges to the evaluator.

This chapter has reviewed a range of estimation methods developed in the evaluation

literature for evaluating the impact of program interventions in these kinds of situations.

The goal of the chapter was to identify different parameters of interest in an evaluation,

45Only weak assumptions on the continuity of the K function are required.
46The intercept of the wage offer equation will, in general, not be separately identified from the K function

unless there is a subset of the data for which Pr(s = 0|z, k) = 1. On this point, known in the literature as
identification at infinity, see Heckman (1980) and Andrews and Schafgans (1998).
47Given an estimate of γ, the scaling factor in the discrete choice problem can also be obtained.
48Here, we use the fact that the conditional expectation of s, E(s|zγ̂−α̂+δ̂k = τ) = Pr(s = 1|zγ̂−α̂+δ̂k =

τ).
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illustrate different methods for estimating them, review their identifying assumptions and

describe how different methods relate to one another.

Each of the econometric evaluation estimators discussed in this chapter invokes a differ-

ent set of assumptions to justify its application. The question of which method to adopt

in any particular circumstance will be context-specific and will also depend on the quality

of data available. For example, matching methods impose weak assumptions on the condi-

tional mean of the outcome equation, but they make the strong assumptions that which unit

receives treatment is ignorable after conditioning on a set of observed covariates. Such a

method should only be adopted only in situations where the available conditioning variables

are rich enough to make the required assumption plausible. Control function estimators

are the most general class of estimators, in that they explicitly allow possibly time-varying

unobservables to affect program participation decisions. The implementation of parametric

control function estimators are straightforward, but a drawback to them is that they typ-

ically assume that error terms are normally distributed. Semiparametric control function

estimators provide a more flexible alternative, but they often require additional assumptions

to achieve identification of parameters of interest.

Regression-discontinuity estimators can be applied in situations where there is a known

discontinuity in the treatment assignment rule as a function of some underlying variable,

such as a score determining who is eligible for the treatment. These estimators can be

justified under weak assumptions, but they usually only provide information on treatment

effects at the points of discontinuity.

Lastly, the evaluator has access to a class of instrumental variables estimators, that can

be applied In situations where there is a variable affecting the program participation decision

but not affecting the outcome. When there is a valid exclusion restriction, one option is

simply to apply the Wald IV estimator, which recovers the local average treatment effect

(LATE) parameter. The newest of the evaluation methods considered in this chapter are

Local Instrumental Variable (LIV) estimators that can be applied when there is a continuous

instrumental variable. LIV estimators provide a means of learning about the distribution of
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treatment effects and can be used to generate other parameters of interest, including LATE,

treatment on the treated (TT), average treatment effect (ATE).
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