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Abstract

High rates of grade retention are a matter of much controversy and debate worldwide. Al-

though some students may learn more with extended classroom time, other students get

discouraged and drop out of school. This paper develops and implements a dynamic value-

added modeling approach for estimating grade retention effects in Portuguese high schools

where over 40% of students were retained. The statistical model is derived from an educa-

tion production function that describes how knowledge cumulates with sequential years of

school attendance, including repeated grades. Model parameters are obtained using simu-

lated method of moments applied to nationwide administrative test score data. The esti-

mated model is used to simulate achievement in math and Portuguese under the existing

grade retention and compulsory schooling policies and under alternative policies. Results

show that the average impact of the current policy on 12th grade test scores of retained

students is positive, 0.2 standard deviations in math and 0.5 s.d. in Portuguese. However,

test score impacts are heterogeneous and roughly one third of students experience negative

impacts. Retention also significantly increases school dropout, especially for male youth and

older students. A cost-benefit analysis that incorporates effects of grade retention policies

on educational attainment, knowledge, age of labor market entry and earnings shows how

the optimal retention policy varies with labor market returns to knowledge.



1 Introduction

Grade retention patterns differ markedly across countries. In most Scandinavian countries

and also in Korea, Japan and Malaysia, grade repetition is very rare or in some cases not

allowed (e.g. Norway, Iceland). However, in other countries, such as the Netherlands, France,

Portugal and Brazil, repetition is common and more than 20% of students repeat at least

one grade by age 15.1 Portugal, the focus of this paper, has some of the highest rates of

grade retention in the world. More than 40% of students in the cohort we study – students

who are in the 9th grade in 2008/2009 – are held back at least one year in high school alone.

Despite the vast differences in grade retention policies across countries and their possible

effects on schooling and labor market outcomes, there is little research that considers the

question of optimal retention policy design, as we do in this paper.

Whether grade retention provides benefits for lower achieving students is a matter of

much controversy and debate, with some governments passing laws that aim to preempt

schools’ ability to retain students (Colombia, for example). Proponents of grade retention

argue that the practice provides students with the opportunity to master the curriculum

before moving on to more advanced material. Under this view, academic achievement is a

cumulative process and mastering the material in one grade facilitates learning in the next.

On the other hand, retained students may be stigmatized, have a hard time adjusting to a

new peer group and suffer from reduced self-esteem. If students get discouraged, then high

retention rates, particularly in secondary school, could increase dropout. Grade retention

policies are also expensive, because they entail additional per pupil expenditures as well

as opportunity costs of delayed labor market entry for students. For these reasons, it is

important to understand whether the benefits outweigh the costs.

A large literature aims to estimate grade retention effects on retained students in ele-

mentary school, middle school, and high school. Randomized control trials are usually not

1For example, based on the 2015 PISA student questionnaire, the percentage of 15 year-old students who
had been retained were: 7.1% in Australia, 11.0% in the United States, 20.1% in the Netherlands, 22.1% in
France, 31.2% in Portugal, 31.3% in Spain, and 34% in Belgium.
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feasible, so almost all of the research is based on observational data. The use of observational

data to analyze grade retention poses two distinct methodological challenges. The first is

that retained students tend to perform less well than their peers and are often negatively

selected on both observable and unobservable dimensions, such as ability, socioeconomic

background, intrinsic motivation, and emotional maturity. The second is that retention may

increase the likelihood of dropout, causing sample selection bias in comparisons of retained

and nonretained students. Controlling for the endogeneity of the retention decision and non-

random selection is requisite to infer the causal effects of retention on educational attainment

and academic achievement.

Research studies have addressed these challenges using a variety of methodological ap-

proaches, including regression-discontinuity, instrumental variables, control function, factor-

analytic methods, difference-in-differences, and matching-on-observables approaches. Some-

times retained students are compared to non-retained students of the same age and, at other

times, they are compared to students of the same grade but of different ages. The empir-

ical evidence reported in the literature on whether grade retention is harmful or beneficial

is mixed. Holmes and Matthews (1984) and Jimerson (2001) present two different meta-

analyses that focus on the frequency of positive and negative estimated effects across studies

without accounting for study differences in research designs. Both papers conclude that

the preponderance of the evidence is that grade retention is harmful. Allen et al. (2009)

carry out a meta-analysis of 22 studies that they deem to have high quality research designs,

namely, ones in which the retained students are well-matched to a comparison group in terms

of pre-retention covariates. They explore how estimated retention effect sizes vary with the

study design quality, with the grade in which the student is retained and with the number of

grades since the retention occurred. Their findings challenge the view that grade retention

is harmful. We describe how this study relates to and builds on the extensive literature in

section two.

The goals of this paper are (i) to develop and estimate a dynamically linked value-added

model for analyzing the effects of grade retention on subsequent academic achievement, (ii)
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to use the estimated model to evaluate grade retention’s effects in Portuguese high schools

and (iii) to explore questions related to optimal retention policy design. Our model aims

to capture how learning in one grade depends on the extent of learning in prior grades,

including any repeated grades, as well as on school and family investments. Specifically, we

specify a model where knowledge in a given year and subject (e.g. 12th grade math) depends

on previous year knowledge, intervening family and school inputs, unobserved factors and

random shocks.2

Two key differences between our modeling approach and existing approaches (described

in section two) are that we introduce unobserved factors within a value-added framework that

controls for lagged test scores, and we specify different value-added equations, depending on

the grade level and on whether the student is taking that grade for the first or second time.

Allowing the achievement production function to differ in years when students are retained

is important, because the learning process could be different when students are seeing the

material for the second time. Our framework also includes separate models for dropping

out and for grade retention. In these discrete choice equations, variables describing local

labor market conditions and historical school retention patterns provide exogenous sources

of variation that are useful for identifying model parameters.

As previously noted, retained students differ in both observable and unobservable dimen-

sions and there is typically a negative selection pattern. Our model incorporates rich observed

heterogeneity by allowing student gender and family demographics to affect schooling pref-

erences as well as the achievement production function. The model also includes observable

dimensions of school quality, such as class size, school size, teacher age and gender. Lastly, it

incorporates unobserved heterogeneity in the form of unobserved discrete multinomial types,

as in Heckman and Singer (1984) and Cameron and Heckman (1998).3 These types (factors)

enter multiple model equations to control for unobservable attributes and, in doing so, allow

2See Todd and Wolpin (2003) for discussion of methods for estimating educational production functions
and assumptions that underlie value-added models.

3As discussed in Todd and Wolpin (2003) and Rivkin et al. (2005), in estimating value-added models, it is
important to control for unobserved inherent student abilities, corresponding to cognitive ability, personality
traits, or motivation, that may affect a child’s achievement growth.
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correlated error structures across equations. The model exhibits structural state dependence,

because the dropout and retention decisions can depend on student achievement.

We analyze administrative data on annual school enrollment and standardized test scores

in math and Portuguese from the Ministry of Education in Portugal for the years 2008-2013.

Enrollment and grade retention are measured in every year, but the standardized tests are

high-stakes tests that are only administered in grades 9 and 12.4 If a student is retained

in 9th or 12th grade, we observe multiple test scores corresponding to the different years

when the student took the same-grade test. As described below, our model and estimation

approach accommodates the fact that some students have multiple test scores in the same

grade as well as the fact that enrollment, dropout, and retention are observed annually

whereas test scores are observed only in the years and grades when students take the tests.

This is a common issue that educational researchers face, because standardized tests are not

always available for every grade. Our estimation strategy addresses this differential timing in

a way that is consistent with our theoretical knowledge accumulation model. Our estimation

strategy derives moments from the model that correspond to the mean and variance of test

scores for subgroups of students with different schooling trajectories. These moments form

the basis for efficient parameter estimation via Simulated Method of Moments (SMM).

The estimated model is used to study how grade retention affects learning in math and

Portuguese, as reflected in test scores, as well as dropout behavior. Our analysis yields a

number of insights about grade retention impacts and provides guidance as to how the current

policy in Portugal could be modified to achieve greater benefits. First, we find that the

current retention policy increases 12th grade test scores on average by about 0.20 standard

deviations (s.d.) in math and about 0.50 s.d. in Portuguese for students experiencing

retention. Second, the largest grade retention benefits are observed for lower performing

students. Third, grade retention significantly increases dropout, particularly for male youth

and for youth that are older than their peers at the time of entering high school. Also,

4The 9th grade test is partly used as a basis for deciding whether the student passes the grade. The 12th
grade test score is used both as a basis for completing high school as well as a college entrance examination.
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retention in the 10th grade increases dropout more than retention in later years. Fourth,

retention impacts are heterogeneous, with more than 30% of students experiencing negative

test score impacts. Using local linear regression methods, we nonparametrically estimate

the relationship between retention impacts and the probability of retention and find that the

current retention policy targets students with the highest potential test score benefits but

that these students also experience the greatest increase in dropout risk.

Lastly, we perform a cost-benefit analysis to assess whether the lifetime earnings benefits

of grade retention exceed the costs, incorporating the estimated heterogeneous impacts. Our

impact analysis shows that grade retention induces earlier dropout for some students but

increases cognitive skills for others who stay in school. Therefore, the cost-benefit analysis

trades off the benefits of increased skill with the costs of reduced educational attainment

and delayed labor market entry. Another relevant consideration is that grade retention

policies interact with compulsory schooling policies, because making school compulsory can

mitigate some of the negative impacts on dropping out. In fact, in 2009, Portugal increased

its compulsory schooling age from 15 to 18, which affected cohorts that entered high school

a few years after the one we study. Using our estimated educational attainment and test

score impacts, we evaluate how retention policies together with compulsory schooling laws

affect each student’s skill level, educational attainment, and predicted lifetime earnings.

Predicted earnings are obtained from Mincer earnings regressions estimated on a matched

employee-employer data set (the Quadros de Pessoal).5 We find that retaining 40% of

students only passes a cost-benefit test if the labor market returns to math and language

skills are sufficiently large (around 13%).

The paper develops as follows. Section two describes how our study relates to and builds

on the extensive literature. Section three provides background on the Portuguese education

system. Section four develops the modeling framework, and section five discusses estimation.

Section six describes the data and estimated model parameters. Section seven presents

5The Quadros de Pessoal data are used frequently in analysis of the Portuguese labor market (Campos
and Reis (2017)).
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simulation-based estimates of retention impacts on test scores, dropout and educational

attainment, and provides evidence on impact heterogeneity. Section eight performs cost-

benefit analysis. Section nine concludes.

2 Related literature

Studies in the literature use a variety of methods to evaluate the effects of grade retention in

primary, lower secondary, and upper secondary grade levels. Below, we focus on more recent

studies, grouped by the different methodologies used to control for potential endogeneity

bias. Existing studies typically do not control for dynamic selection bias arising from school

drop out, which is a key concern with older-age youth. Also, most studies focus on test score

and education impacts and do not consider impacts on lifetime earnings streams and/or the

question of optimal retention policy design. The methods we develop and implement in this

paper address these concerns, which are important in the context of high school retention.

Several studies in the literature use regression-discontinuity (RD) designs, exploiting dis-

continuities in the rules determining which children are retained. For example, Jacob and

Lefgren (2004) and Jacob and Lefgren (2009) use a RD estimator that exploits the imple-

mentation of an accountability policy in Chicago Public Schools. They find a modest benefit

of third grade retention on achievement scores but no effect of sixth grade retention. When

Jacob and Lefgren (2009) look at longer-term impacts, they find that eighth grade retention

decreases high school completion but earlier retention does not have this effect. Manacorda

(2012) analyzes grade retention effects in junior high school using administrative data from

Uruguay and also exploiting a discontinuity in the retention rules, whereby students who

fail three or more classes automatically fail the grade. He shows that grade failure leads to

an increase in dropout in the year that the failure occurs. Schwerdt et al. (2017) exploit a

discontinuity in retention probabilities under Florida’s test-based promotion policy to study

third grade retention impacts on student outcomes through high school. They find large

positive effects on achievement through grade 10 but that the effects fade out if students

are compared to same-age peers. They also find that third grade retention increases stu-
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dents’ grade point averages and leads them to take fewer remedial courses in high school but

does not affect students’ graduation probability.6 Winters and Greene (2012) also use a RD

strategy to study the effects of remediation and grade retention in Florida. Students who

were retained in the third grade were first required to attend summer school and then were

assigned to a high quality teacher during the retention year. The study finds a statistically

significant positive impact on student achievement in math, reading, and science that is

sustained for some years after the treatment but then dissipates. Eren et al. (2017) use an

RD design to analyze the net effects of summer school remediation and test-based promo-

tion policies in Louisiana on high school completion and juvenile crime. For eighth grade

students, they find that retention decreases crime but increases drop-out. A well known limi-

tation of RD designs is that they identify retention impacts only for the subgroup of children

near/at the margin of being retained. In this paper, we find that the retention impacts in

Portuguese high schools are larger for students with a high probability of retention than for

the average student or for students near the margin of being retained.

Another group of studies use instrumental variables (IV) estimators to analyze the effects

of grade retention, usually within a regression framework. When impacts are heterogeneous

across students, IV estimates are interpretable as a local average treatment effect (LATE),

which is the average impact of retention for children who were retained because of the value

of the instrument (the so-called complier group).7 An early study by Eide and Showalter

(2001) uses the High School and Beyond data set to analyze the effects of grade retention

on high school dropout and on subsequent earnings. The instruments are derived from

kindergarten school entry rules and correspond to various functions of the difference between

the child’s birthday and the cut-off for starting kindergarten. Their OLS estimates suggest

that grade retention increases the probability of dropping out of school and negatively affects

earnings, but their IV estimates tend not to be statistically significantly different from zero.

6Figlio and Özek (2020) use an RD design to study effects of third grade retention plus instructional
support on English language learners in 12 Florida school districts. They find that grade retention increases
language proficiency and increases the likelihood that students take more advanced coursework in middle
school and high school.

7See Angrist and Imbens (1995).
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Pereira and Reis (2014) and Garcia-Pérez et al. (2014) study the impact of grade retention

in Portugal and Spain using the PISA data set, also using birth date as an instrumental

variable. Pereira and Reis (2014) find that grade retention has small positive impacts on

educational outcomes in the short term, while Garcia-Pérez et al. (2014) find negative effects.

Lastly, Gary-Bobo et al. (2016) use quarter-of-birth as an instrument to estimate the effects

of grade retention in French junior high schools. They find that the IV estimates are not

robust and instead adopt a factor analytical model (described below).

An alternative way of accounting for the endogeneity of retention is to use control func-

tion techniques, which explicitly model how unobservables influence retention. Dong (2010)

analyzes the impact of kindergarten grade retention using ECLS-K data. Her framework

jointly models the choice of enrolling in a school that allows kindergarten retention, the

decision for a child to repeat kindergarten, and academic performance in subsequent grades

(through grade three). She also implements a nearest neighbor matching estimator. Both

the control function estimates and the matching estimates indicate that grade retention im-

proves academic performance, but the positive effects diminish over time (from the 1st to the

3rd grades). Her study compares retained and non-retained students holding grade constant.

An another branch of literature uses factor analytic dynamic models (FADM) to analyze

grade retention impacts.8 For example, Fruehwirth et al. (2016) analyze the effects of grade

retention in kindergarten and other elementary grades using ECLS-K data. The authors

develop a potential outcomes framework in which grade retention effects can depend on the

grade in which the student was retained as well as the years since retention. Along with the

outcomes model, they specify a probabilistic grade retention equation, where unobservable

factors can affect both the outcome and retention equations. The factor model assumes

that a low dimensional set of unobservables affects both selection into treatment (retention)

and the outcome. To assess the impact of retention policies, retained and nonretained

children are compared at the same age, which is possible with the ECLS-K data, because

the standardized test scores are comparable across years. As they note, with age held

8Early discussion of these methods include Carneiro et al. (2003) and Heckman and Navarro (2007)
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constant, retained children were exposed to less curricula. They find that grade retention

has significant negative effects on retained children. Saltiel and Sarzosa (2020) also use the

ECLS-K data to analyze the effects of grade retention, focusing on retention in kindergarten

and first grade. They estimate a dynamic model of cognitive and noncognitive skill formation,

which incorporates children’s latent abilities, parental skills, and investment choices.9 The

parameters of the skill formation model are allowed to differ by retention status. Their

results show that retention lowers cognitive skills for retained students but slightly increases

noncognitive skills (by 0.02 s.d.) and that parental investments increase in response to

retention. Gary-Bobo et al. (2016) use a factor analytic framework to study the effects of

grade retention for French junior high school students, grades 6-9. They find on average

significant positive but small effects of retention on the test scores of those who are retained.

However, retained students are also less likely to complete grade 9.

A study by Cockx et al. (2019) develops and estimates a FADM to estimate effects

of retention in Flemish secondary schools on test scores, dropout, downgrading of schooling

track and delayed graduation. They find neutral effects on short-term academic achievement

but longer-term adverse effects on the other schooling outcomes, particularly for less able

students. The framework we develop differs from the FADM models in the literature in its

use of dynamically linked value-added models, its incorporation of a switching regression

to capture differences in the learning process during retention years, and in providing an

estimation method that addresses the common problem of test scores only being observed

for a subset of grades.

Ferreira et al. (2018) use a difference-in-differences approach to study the effects of a

2010 policy change in Colombia that eliminated a restriction that schools were not allowed

to retain more than 5% of students, which led to dramatic increases in retention rates. They

find a positive impact of increased retention rates on Spanish test scores but no effect on

math scores, with the largest impacts observed for lower performing students. Battistin and

9They build on previous work developing such models (e.g. Cunha et al. (2006), Cunha et al. (2010),
Agostinelli and Wiswall (2016)).
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Schizzerotto (2012) study a remedial education reform in Italy that changed the criteria

for promotion in upper secondary schools. They exploit geographical variation in the re-

form’s implementation and find evidence of heterogeneous impacts, with students in lower

educational tracks experiencing negative impacts.

3 The Portuguese education system

3.1 Organization and governance

The Ministry of Education defines, coordinates, and implements national education policies

in Portugal at the pre-school, basic, and upper secondary levels. The school network is

divided into regional school clusters, which have some autonomy in terms of pedagogy,

scheduling teaching, and managing non-teaching staff.10 The public education system is

divided in pre-school education (from ages three to five), basic education (grades 1 to 9),

and upper secondary education (grades 10 to 12). Public education is free and universally

available from the age of five (the final year of pre-school). For the cohort of students that

we study, school attendance was mandatory for nine years or until age 15. After 2009, upper

secondary school was made mandatory (up through age 18) with the passage of Law no.

85/2009, but the law did not take effect immediately. The first affected cohort were students

who entered high school in 2012/2013, three years after the cohort we study.

Basic education has a common curriculum, with the goal of providing a general educa-

tional background. It is divided into three cycles. The first cycle corresponds to the first

four years (grades one to four) and the second cycle to the next two years (grades five and

six). The third cycle corresponds to lower secondary education (grades seven to nine).

Upper secondary education lasts for three years and provides students with different

pathways to match their vocational interests and/or to prepare them for post-secondary

studies. Admission to alternative secondary tracks is open to everyone, under the view that

10A number of recently implemented reforms have extended cluster autonomy to curriculum management,
assigning responsibilities to municipalities regarding investment, the maintenance of equipment and school
buildings, and the provision of school meals.
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all individuals should be able to choose from all of the educational and training options

available. Students may choose from three tracks: a) science-humanities courses; b) voca-

tional courses; c) other education and training. Track (a) is most oriented towards further

studies, although other tracks also offer dual certification (academic and vocational). Access

to post-secondary education in Portugal is through competitive national exams taken in the

12th grade. In principle, students who attend alternative tracks can take the exams and

obtain access to higher education.

The administrative data that we analyze pertain to students pursuing the science and

humanities courses track. Within this track, there are four subtracks with different course

and examination requirements: science and technology, socio-economic science, languages

and humanities, and visual arts.

3.2 Assessment

Evaluation in the Portuguese educational system is based on both course grades and external

national exams. At the end of basic education (9th grade), students take national exams

in Portuguese and math. At the end of upper secondary education (12th grade), students

in the science-humanities course track take four national exams.11 Portuguese is a required

subject for all students; however, math is only a required subject for 12th grade students

in the science and technology and socio-economic science subtracks. The other required

exams vary depending on the secondary track pursued and the requirements of universities

for admission to different majors/programs.

We focus our analysis on learning in math and Portuguese courses and pool students in

the science and technology and socio-economic science subtracks into a single category, which

we call STEM. Students in the languages and humanities as well as visual arts subtracks are

grouped together into a single non-STEM category. Students in STEM constitute 76% of

our sample.

11A small number of courses, not including math or Portuguese, allow students to take final exams following
11th grade.
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3.3 Retention in upper secondary school

As previously noted, Portugal has some of the highest retention rates in the world. Retention

depends on both course marks and national exam scores. At the end of each academic year,

students receive a mark in each subject ranging from 1 to 20 . In grades 10 and 11, a student

fails in a specific subject if the mark is below 10, and failure results in retention. At the

end of 12th grade, students take the national examinations. In subjects that are covered

by these national exams, the final course mark is calculated as a weighted average of the

internal mark (70%) and the exam score (30%), which is rescaled to be between 0 and 20.

A student is retained in a 12th grade course if this weighted average is below 10.

One reason why retention is so common in Portugal is that the national examinations at

the end of high school serve the dual purpose of high school exit exams and college entrance

exams. The national exams are frequently more challenging than the assessments students

complete in their high school courses. The average student fails the national math exam and

narrowly passes the Portuguese exam (detailed later in Table 4). The only factor keeping

retention rates from being even higher is that internal grades frequently raise students’

weighted average above the minimum threshold needed to pass.

Our data set includes information on exam scores, dropping out, and retention. It includes

limited information on internal course grades, and we do not incorporate grades into our

model. We do not view this as a major drawback, because grades are more often a relative

measure of skill than an absolute measure and there are likely to be somewhat different

grading criteria across schools and teachers.

4 Model

4.1 The value-added model

In this section, we exposit the value-added model of knowledge acquisition in two subjects

(math and Portuguese) that we estimate. We first describe how the model can be derived

from a general cumulative educational production function. Let Kia denote knowledge of
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individual i at age a. Let µi0 denote the individual’s unobserved endowment.12 We assume

that the knowledge that a young person accumulates depends on the history of family inputs,

school inputs, and on the endowment. Let Fi(a) denote family inputs applied up until age a

and Si(a) school inputs applied through age a. A general specification for knowledge at any

age a can be written as

Kia = Ka[Fi(a), Si(a), µi0, ξia]

where ξia represents random components (such as a random illness the day of the test). Let

Ii(a) denote the vector of family and school inputs, Ii(a) = (Fi(a), Si(a)). A linear regression

analogue of the previous equation can be written as

Kia = Iiaα1 + Iia−1α2 + Iia−2α3 + ...+ Ii1αa + βaµi0 + ξia

As discussed in Todd and Wolpin (2003), the major challenges in estimating educational

production function models are that the entire history of family and school inputs is almost

never observed and endowments are not observed. However, it is possible to impose some

restrictions on the cumulative model coefficients to derive an implementable specification.

For example, we obtain a value-added model if we multiply Kia−1 by γ and subtract:

Kia − γKia−1 = Iiaα1 + Iia−1(α2 − γα1) + ...+ Ii1(αa − γαa−1) +

(βa − γβa−1)µi0 + ξia − γξia−1

If we further assume that αa = γαa−1, then only the lagged test score, contemporaneous

input measures, and unobserved endowment terms remain in the equation. This assumption

implies that the input coefficients decline geometrically with distance, as measured by age,

from the achievement measurement and the rate of decline is the same across input measures.

If one is willing to impose a similar assumption on µi0, namely that βa = γβa−1, then we

obtain a value-added model of the kind commonly estimated in the literature on test score

determinants:

Kia = γKia−1 + Iiaα1 + ξia − γξia−1
12This is sometimes assumed to be determined at the time of conception.
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Note that this specification assumes that lagged knowledge is a sufficient statistic for prior

input investments as well as heritable endowment. In the more general case where we do not

assume βa = γβa−1, the unobserved endowment term would still appear in the equation.

4.2 Incorporating multiple grades and grade retention

In the data, we observe student-level school enrollment patterns in grades 9-12, including

any grade retentions, and standardized test scores for national tests administered in grades

9 and 12. As previously described, these are high stakes tests. The 9th grade tests, in

conjunction with course grades, are used to determine whether a student passes the grade.

The 12th grade test is also used, in part, to determine passing and, in addition, is one of

the criteria colleges use in deciding whether to admit students and in determining the set of

college majors for which the student is eligible.

Our school enrollment model begins at the start of high school (10th grade). Students can

begin high school at different ages, depending on the age at which they started kindergarten

and on whether they were retained in prior grades. We describe the academic achievement

model in terms of time t rather than age, although age evolves deterministically with time.

In the empirical analysis, we will control for age variation across students within a grade.

Let KG
t denote the knowledge measure at grade G ∈ {9, 10, 11, 12} in time t. Our sample

consists of all students who enter grade 10 after completing grade 9. Students can pass

or fail (be retained) in grades 10, 11, and 12. They can also drop out of school in any

grade. Table 1 describes the different possible high school trajectories and the knowledge

measures associated with each trajectory for students that only fail the same grade at most

once. Additional paths in which students fail the same grade multiple times are relatively

infrequent in our data and are not shown in Table 1 (but are used in estimation). The

third column lists the knowledge measures that are observed in the data for each high school

trajectory. These observed knowledge measures are a subset of all the potential grade-specific

knowledge measures, because the national exams are only taken in the 9th and 12th grades,
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and we observe test scores over a period of five years.13

Table 1: Common high school trajectories and knowledge measures

Grades in High School All Knowledge measures Observed Knowledge measures
10,11,12 K9

t , K10
t+1,K

11
t+2,K

12
t+3 K9

t , K12
t+3

10,10,11,12 K9
t , K10

t+1,K
10
t+2,K

11
t+3,K

12
t+4 K9

t , K12
t+4

10,11,11,12 K9
t , K10

t+1,K
11
t+2,K

11
t+3,K

12
t+4 K9

t , K12
t+4

10,11,12,12 K9
t , K10

t+1,K
11
t+2,K

12
t+3,K

12
t+4 K9

t , K12
t+3,K

12
t+4

10,10,11,11,12 K9
t , K10

t+1,K
10
t+2,K

11
t+3,K

11
t+4,K

12
t+5 K9

t

10,11,11,12,12 K9
t , K10

t+1,K
11
t+2,K

11
t+3,K

12
t+4,K

12
t+5 K9

t ,K12
t+4

10,10,11,11,12,12 K9
t , K10

t+1,K
10
t+2,K

11
t+3,K

11
t+4,K

12
t+5,K

12
t+6 K9

t

10,10d K9
t , K10

t+1 K9
t

10,11d K9
t , K10

t+1 K9
t

10,11,11d K9
t , K10

t+1,K
11
t+2 K9

t

10,10,11,11d K9
t , K10

t+1,K
10
t+2,K

11
t+3 K9

t

10,11,12d K9
t , K10

t+1,K
11
t+2 K9

t

10,10,11,12d K9
t , K10

t+1,K
10
t+2,K

11
t+3 K9

t

10,10,11,11,12d K9
t , K10

t+1,K
10
t+2,K

11
t+3,K

11
t+4 K9

t

Note: The table lists the knowledge measures available for students with the most common paths in the
data. Subscripts refer to the year, while supercripts refer to the grade. Observed knowledge measures
correspond to measures in the data.

Knowledge in a particular year in a certain subject (math or Portuguese) depends on

the knowledge level in the prior year and the levels of intervening family and school inputs.

Let Igt denote the vector of inputs (family and school) applied at time t in grade g. In

theory, inputs into the achievement production function could be modeled as endogenous

and respond to the child’s knowledge level.14 However, the family inputs that we use in our

analysis, parental education and socioeconomic status, vary little over time, and the school

inputs also vary little in response to grade retention. Students who repeat a grade experience

an average decline in class size of 0.1 students between the first and second year enrolled in

that grade, while the corresponding year-to-year change in class size for promoted students

13We observe individual’s test scores over a five-year period starting in 2008/2009. In the sixth year, we
see whether the student is still enrolled in high school (relevant for students who are retained two or more
times), but we do not see their end-of-year scores on the national exams.

14See related discussion in Todd and Wolpin (2003), Todd and Wolpin (2007)
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is a reduction of 0.7 students. Similarly, year-to-year changes in teacher age are an increase

of 0.40 (0.49) years in math (Portuguese) for retained students, while the corresponding

figures for promoted students are 0.80 (0.90). This comparison is a 0.002 percentage point

(pp) reduction in the probability that the teacher is female for retained students and a 0.01

pp reduction for promoted students. School size differs minimally over time for both groups

of students. The fact that school inputs are similar for retained and promoted students is

consistent with there being no official policy in Portugal to target additional resources to

retained students.

We also incorporate into the model unobserved heterogeneity in the form of discrete

unobserved discrete types, following the approach of Heckman and Singer (1984). These

unobserved types are assumed to be known to the individual but not to the econometrician.

The types can enter the model through the knowledge accumulation equations as well as

through dropout and grade retention decisions (as described in detail below), which allows

for correlated error structures across equations. A pattern of negative selection into retention

will be controlled by observable heterogeneity (e.g. initial ninth grade test scores, gender,

family background, prior retention history) as well as the unobserved types. Let µmi = 1 if

individual i is type m (m ∈ 1...M), else µmi = 0.

Standardized tests measure mastery of the curriculum in a particular grade. Retained

students get tested on the same curriculum twice (the test is comparable although not

identical across years). We therefore specify two separate value-added models depending on

whether a student advanced to the next grade or was retained to allow the learning process

to differ for students seeing the material for the first or second time. Let Rg
i,t = 1 if student

i repeats grade g, else = 0. The value added model for a student in grade g who is not

retained in the prior year (Rg−1
i,t−1 = 0) is given by

Kg
i,t = γgKg−1

i,t−1 + βgIgi,t + φgXg
i +

M∑
m=1

αmµmi + εgi,t , (1)
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whereas the equation for a student who is retained (Rg
i,t−1 = 1) is given by

Kg
i,t = γgRKg

i,t−1 + βgRIgi,t + φgRXg
i +

M∑
m=1

αmRµmi + εgRi,t , (2)

where Xi denote time-invariant individual characteristics, including the student’s gender and

their age at secondary school entry relative to the modal age for secondary school entry (e.g.

0 years behind, 1 year behind, etc, which usually reflects retentions prior to high school).

In implementation, we estimate equations (1) and (2) jointly for math and Portuguese, as

retention and dropout depend on both subjects. For ease of exposition, for now, assume

that no one drops out of school but later we will incorporate dropout.

We can substitute the value-added equations for grades 10 and 11 to obtain a model

that expresses 12th grade knowledge as a function of 9th grade knowledge. The required

equation substitutions depend on the specific high-school trajectory pursued by each student.

For example, consider a student who had no retentions and for whom we observe knowledge

in 12th grade (time t + 3) and 9th grade (time t), intervening family and school inputs at

grade g, Igi,t, and time-invariant controls, Xi. Through substitution, we obtain

K12
i,t+3 = γ12γ11γ10K9

i,t + γ12γ11β10I10i,t+1 + γ12β11I11i,t+2 + β12I12i,t+3 + γ12γ11φ10Xi + γ12φ11Xi

+φ12Xi +
M∑
m=1

µmi (γ12γ10α10
m + γ12α11

m + α12
m ) + {ε12i,t+3 + γ12ε11i,t+2 + γ12γ11ε10i,t+1}

Now, consider a student who was retained in grade 10 and whose high school grade trajectory

is 9, 10, 10, 11, 12. After making the appropriate substitutions, one obtains that knowledge

in grade 12 (time t+ 4, given this particular trajectory) can be written as

K12
i,t+4 = γ12γ11γ10Rγ10K9

i,t + γ12γ11γ10Rβ10I10i,t+1 + γ12γ11β10RI10i,t+2 + γ12β11I11i,t+3 + β12I12i,t+4

+γ12γ11γ10Rφ10Xi + γ12γ11φ10RXi + γ12φ11Xi + φ12Xi +

+{ε12i,t+4 + γ12ε11i,t+3 + γ12γ11ε10Ri,t+2 + γ12γ11γ10Rε10i,t+1}

Comparing this equation with the previous one shows that a student who attends school

longer because of retentions will have additional terms in the value-added model to reflect
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the additional year(s) of investment. Also, the coefficient on the lagged knowledge measure,

K9
i,t, will differ compared to a student who was not retained. We use these knowledge

accumulation equations to form moments of the 12th grade test score distribution for students

with different schooling trajectories and estimate the model parameters using SMM.

4.3 Special cases

It is useful to consider how knowledge accumulates for some special cases to explore potential

retention effects within this framework. Consider the case where γg = 1 for all g. In that

case, prior knowledge does not depreciate from year to year and the further accumulation

of knowledge depends only on additional investments. Students who are retained in grade

10 have an additional year of investment. Assuming the residuals have mean zero and that

family and school investments have positive coefficients (β10RI10i,t+2 > 0), the model implies

that retention would be beneficial on average (that is, E(K12
i,t+4 > K12

i,t+3)).

In general, though, we would expect γg < 1, as value-added coefficients on lagged test

scores are typically estimated to be less than one. In that case, a low level of initial knowledge

in grade 9 is less consequential in grade 12 (the depreciation will be greater) if the student

is retained. If investment levels were zero in every year, then retention would be harmful for

end-of-schooling knowledge levels, as retention implies an extra year of knowledge deprecia-

tion. However, in the general case when knowledge depends not only on lagged knowledge

but also on additional family and school inputs (investments), the effect of retention will

depend on the relative benefit of an additional year of investment and on the lag coefficients

determining how knowledge accumulates from year to year.

In principle, separate knowledge equations could be estimated for each grade level. How-

ever, we only observe test scores (knowledge measures) in grades 9 and 12 when the tests

were administered, so we impose some restrictions on the stability of the value-added equa-

tion coefficients across grades. In particular, we assume γg = γ, γgR = γR, βg = β, βgR = βR

for all grades g. We estimate separate parameters for math and Portuguese.
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4.4 Dropout and grade retention

In grades 10 and 11, students are either retained in all subjects or in none, but in grade

12 they may be retained in one subject (e.g. math) but not the other (e.g. Portuguese).

We model retention in grades 10 and 11 as functions of both math (Kg,M
i,t ) and Portuguese

(Kg,P
i,t ) knowledge levels:

R10
i,t = 1(λ100 + λ101 K

10,M
i,t + λ102 K

10,P
i,t + λ103 H

R
i,t−3 + λ104 Ii,t + λ105 Xi +

M∑
m=1

αm,10RETµ
m
i + ν10i,t > 0)

(3)

R11
i,t = 1(λ110 + λ111 K

11,M
i,t + λ112 K

11,P
i,t + λ113 H

R
i,t−3 + λ114 Ii,t + λ115 Xi +

M∑
m=1

αm,11RETµ
m
i + ν11i,t > 0).;

(4)

where νi,t is a normally-distributed error term, and Ii,t denotes family investment, as before.

We also assume that retention potentially depends on an additional variable that captures the

“culture of retention” in the concelho (similar to a municipality) where the student attends

high school. This variable, HR
i,t−3, is the average retention rate in the concelho three years

earlier. This variable provides an exclusion restriction generating variation in retention rates

across students. The term
∑M

m=1 α
m,11
RETµ

m
i is the effect of unobserved heterogeneity (discrete

multinomial types).

As noted, retention in grade 12 is subject-specific, so we allow for two subject-specific

retention equations in that grade:

R12,M
i,t = 1(λ12,M0 + λ12,M1 K12,M

i,t + λ12,M2 HR
i,t−3 + λ12,M3 Ii,t + λ12,M4 Xi +

M∑
m=1

αm,12MRET µmi + ν12,Mi,t > 0) ,

(5)

R12,P
i,t = 1(λ12,P0 + λ12,P1 K12,P

i,t + λ12,P2 HR
i,t−3 + λ12,P3 Ii,t + λ12,P4 Xi +

M∑
m=1

αm,12PRET µmi + ν12,Pi,t > 0) .

(6)

Retention is observed every year.

Similarly, we observe which students drop out in every year. We assume that the dropout

decision depends on investment variables, Ii,t, knowledge in both subjects in the prior year,
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KM
i,t−1 and KP

i,t−1, an individual’s unobserved type, and four variables describing labor market

conditions. The first and second variables measure gender-specific employment probabilities

for high school dropouts and high school graduates, respectively, in the region of the country

where the student attends school. The third and fourth variables are gender-specific monthly

salaries (Euros/mo) for high-school dropouts and high school graduates in the district where

the student attends high school There are a total of five regions and eighteen districts in

Portugal.15

Dropping out in grades 10, 11 or 12 is modeled as a binary outcome. The dropout model

for grade g is specified as:

dgi,t = 1(δg0 + δg1K
g,M
i,t−1 + δg2K

g,P
i,t−1 + δg3Li,t + δg4

t−1∑
k=1

R
g(k)
i,k + δg5Ii,t−1 + δg6Xi +

M∑
m=1

αg,mD µmi + ηgi,t > 0) ,

(7)

where Li,t is a vector containing the four labor market variables and
∑t−1

k=1R
g(k)
i,k is the total

number of retentions in high school up through the prior year, t− 1. The coefficient on this

variable, δg4 , captures any possible discouragement due to retention in high school and is

the main channel through which retention influences drop out. The other, indirect, channel

through which retention influences dropout is through its effect on future test scores.

5 Estimation

We estimate the parameters of the model using simulated method of moments. We adopt

an unconditional simulation approach (Gourieroux et al. (1996)), meaning that we simulate

each student’s path of educational outcomes throughout high school starting from the initial

conditions in ninth grade. We chose an unconditional simulation approach, because test

scores are not observed in all grades. We choose the model parameters to minimize the

distance between the model simulations and data moments.
15Because we do not observe schooling information in the year the student drops out, we write the dropout

model as a function of schooling variables measured in the prior academic year. We have in mind a scenario
in which a student decides in August 2009 whether to enroll in school the next year, 2009/2010 = t+ 1, and
bases his decision jointly on current labor market conditions and what transpired in the previous academic
year – scores on exams as measured in May/June as well as family investment in the prior academic year.
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Table 1 lists common high school trajectories in the data. As described previously,

students are sometimes retained in one subject but not the other. We therefore define a

variable, hi, that represents an individual’s history, which is the Cartesian product of an

individual’s math path and Portuguese path, hi ≡ PathMathi × PathPTi. We denote the

set of possible histories by H. H contains more histories than are shown in Table 1, which

lists only the most common histories in the data.

To simplify notation, let yi,t = (Kg,M
i,t , Kg,P

i,t , hi) denote the vector of endogenous vari-

ables, zi = {Ii,t, Xi, Li,t, H
R
i,t}Tt=1 the vector of exogenous variables, εi := {{εsi,t}Tt=1}Ss=1 =

{{νsi,t, ε
g,s
i,t , ε

gR,s
i,t , ηsi,t}Tt=1}Ss=1 the set of simulated errors, and θ the vector of model parame-

ters. Note that a history captures the drop-out and retention decisions, so we do not need

to separately include the retention and drop-out variables, Rg
i,t and dgi,t, in yi,t.

We simulate the full path of endogenous variables as a function of exogenous variables

and shocks. A given simulation, s, can be written as ysi,t = r(ysi,t−1(θ), zi, ε
s
i ) where ysi,t−1(θ)

is a simulated value that depends on the parameter vector θ as well as prior realizations of zi

and εsi . A path simulation allows us to write ysi,t as a function of only the exogenous variables,

z, the shocks, ε, and the initial value of the process, yi,0: y
s
i,t = r(yi,0, zi,1, . . . , zi,t, ε

s
i,1, . . . , ε

s
i,t).

The Simulated Method of Moments estimator minimizes the following objective function:

J(θ) = { 1

N

N∑
i=1

zi[F (yi)− f(zi, εi, yi,0; θ)]}′Ω∗(θ){
1

N

N∑
i=1

zi[F (yi)− f(zi, εi, yi,0; θ)]} , (8)

where F (yi) is a function only of the data and f(zi, εi, yi,0; θ) is its corresponding simulated

value. f(zi, εi, yi,0; θ) is an unbiased simulator of F (yi), meaning that E[f(zi, εi, yi,0; θ) | zi] =

E[F (yi) | zi].

Recall that our model includes unobserved discrete types. Our simulation-based estima-

tor integrates over the unobserved types by drawing the types from a multinomial distribution

and then simulating the rest of the outcomes conditional on type. The type probabilities

are estimated along with the other parameters (i.e. included in θ). For ease of notation, we

do not write f(zi, εi, yi,0; θ) as a function of the unobserved types, µmi . Once drawn for each
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individual and each simulation, types are treated in the same way as observed covariates.16

There are three basic functions in F (yi) and f(zi, εi, y0; θ): 1(hi=h), 1(hi=h)K
g
i,t, and

1(hi=h)K
g
i,t

2. Hence, the moments we target, mi = zi · F (yi), are covariances between exoge-

nous variables and a student’s endogenous history, covariances between exogenous variables

and observed endogenous test scores, and the second moments of test scores. A full list of

the moments is provided in Appendix A.

We use the optimal weight matrix, Ω∗(θ), which can be estimated by the following for-

mula:

Ω̂∗(θ) =

{
1

N

N∑
i=1

zi

[
F (yi)−

1

S2

S2∑
s2=1

f (zi, ε
s2
i , yi,0; θ)

]

×

[
F (yi)−

1

S2

S2∑
s2=1

f (zi, ε
s2
i , yi,0; θ)

]′
z′i

+
1

S

1

N

N∑
i=1

zi

[
f (zi, ε

s1
i , yi,0; θ)−

1

S2

S2∑
s2=1

f (zi, ε
s2
i , yi,0; θ)

]

×

[
f (zi, ε

s1
i , yi,0; θ)−

1

S2

S2∑
s2=1

f (zi, ε
s2
i , yi,0; θ)

]′
z′i


−1

(9)

As discussed in Gourieroux et al. (1996), obtaining this optimal weighting matrix requires

doing additional simulations.17 The optimal weighting matrix depends on simulations used

in the estimation, εs1i , as well as a separate set of simulations used only for computing the

weight matrix, εs2i .18 We first optimize J(θ) with the identity weight matrix to obtain an

estimate of θ. Then, we calculate Ω̂∗(θ) and re-optimize with this new weight matrix.

16The types appear jointly in the value-added, dropout, and retention equations. Identification of the
distribution of these types follows an identification-in-the-limit argument of Heckman and Navarro (2007).
Their theorem, which requires only that errors be independent across individuals and of regressors in the
initial time period, includes our multinomially distributed types as a special case. This argument requires
transition-specific exclusion restrictions, which in our setting are the local labor market variables and the
historical retention rates in each concelho for dropout and retention, respectively. Appendix D presents plots
of the SMM objective at the minimum as a function of each type-specific parameter, holding constant all
other parameters. The plots reveal that the function is responsive to changes in the parameter values.

17Although the main simulation for SMM requires S simulations, the calculation of the optimal covariance
matrix requires a larger number of simulations, S2 > S.

18Gourieroux et al. (1996) suggest using one of the S values of εs1i .
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Because J(θ) is discontinuous in θ, it can be time-consuming to optimize the function. We

therefore pursue an approach proposed by Ackerberg (2009), which uses importance sampling

to produce a simulator that is continuous in θ and which permits the use of gradient-based

optimization techniques. Appendix B provides a detailed explanation of how we implement

this method to optimize J(θ).

6 Empirical results

6.1 Data description

We estimate the model using data from an administrative data set obtained from the Por-

tuguese Ministry of Education (MISI) that tracks all public school students throughout their

schooling trajectory during the academic years 2008/09 - 2013/14. It follows 48,697 indi-

viduals enrolled in the 9th grade in 2008/09 that choose the general track (rather than the

vocational track) in the beginning of secondary school (10th grade).19

We have information on the schooling trajectory of all students, starting with 9th grade

and then for up to five years after. For each student, we have information on whether they

were promoted or retained at the end of an academic year and if they dropped out. Some

observations lack complete records, but the quality of the panel is extremely good. Discarding

observations with obvious coding errors and missing data, we end up with a sample of 46,103

individuals: 36,496 who enter high school at the modal age, 6,952 lagging behind one year

for their age, and 2,655 lagging behind two or more years. During the time period of our

data, all students take the standardized national exams in math and Portuguese at the end

of the 9th grade. We observe 9th grade test scores and, for students who finish high school,

we also have 12th grade national exam scores.20

Figure 1 shows the distribution of grade retentions during the three years of high school by

19The initial data set comprises all individuals, regardless of age, enrolled in a public school in the 9th grade
in the academic year 2008/09 representing a total of 82,412 individuals. In the following year, students may
be repeating 9th grade, be in the 10th grade general track or 10th grade vocational track, or have dropped
out. We analyze the 48,697 students who transition to the 10th grade general track.

20For students who were retained two times while in high school, we see whether the student is still enrolled
in the final year but we do not see the end-of-year exam scores.
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Figure 1: Retention Distribution by High School Completion/Drop-out Status

whether a student graduates from high school or drops out. 26,993 of students do not repeat

any grade, which represents 58% of the students. One-year repeaters amount to 26%, while

the remaining 16% of students are retained more than one year. A total of 16,944 students

drop out, of whom 7,818 (46%) were retained one year and 7,521 (44%) were retained two

or more years while in high school.

Figure 2 displays the fraction of students retained in each grade. Retention rates vary

considerably by course and grade level. 21.3% of students are retained in the 10th grade,

whereas only 9.7% are retained in the 11th grade. In the 12th grade retention is subject-

specific, and students are more commonly retained in mathematics than in Portuguese.

The data allow an interesting comparison that is suggestive of the causal effects of reten-

tion. Because scores on the 12th grade exams are used to determine eligibility for entrance

into certain college majors, some students voluntarily choose to retake the 12th grade exams

in Portuguese and math in an effort to increase their scores. These students, who take the

national exam in consecutive years but do not re-enroll in classes, form a natural comparison
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Figure 2: Fraction retained in each grade

group for retained students, who must retake both the course(s) and the exam(s) to grad-

uate from high school. Table 2 shows the first and second scores in math and Portuguese

for both voluntary retakers and retained students. Students who are retained have initially

very low scores in math and Portuguese but experience significant test score gains after one

year, 11.33 and 5.40 points, corresponding to 0.48 and 0.32 s.d. Students who voluntarily

retake the exam see no improvement in math and a slight deterioration in their Portuguese

score. Although these voluntarily retakers do not constitute a random sample, the compar-

ison nevertheless suggests that repeating a grade may yield cognitive benefits over simply

retaking an exam.

Table 2: Average change in 12th grade test scores among exam retakers

Math Portuguese
Initial Retake Gain S.D. Initial Retake Gain S.D.

Retained students 18.63 29.96 11.33 0.48 27.53 32.93 5.40 0.32
Voluntary retakers 50.48 50.77 0.29 0.01 45.44 42.96 -2.49 -0.15
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6.2 Summary statistics

The data provide detailed information on individual and family characteristics for each stu-

dent, including their grade, track of studies, gender, age, and nationality. We also have

information on family background, including whether the family receives governmental in-

come support (a proxy for lower income) and parents’ education. In addition, we also have

information on the student’s class and school, including the class size, the school size, and

the teacher’s age and gender.21

Table 3 shows summary statistics for the analysis sample. Girls are slightly overrep-

resented (55%) but are underrepresented among retained students. Most students (79%)

are 16 or younger upon entering 10th grade. Among youth who experience retention, 33%

are 17 or older upon entry. One-third of the sample is in the “low SES” category, with a

higher proportion (38%) for retained students. Mothers of children in the sample tend to be

better educated than fathers: 45% of mothers have either less than basic education (grade

9) or have their education listed as “unknown” compared with 51% for fathers, and 18% of

mothers have more than a high school education compared with 13% for fathers.

Table 4 shows summary statistics pertaining to test scores, school characteristics, and

teacher characteristics. It also shows the average values of the additional set of variables

(exclusion restrictions) that are included in modeling the dropout and retention decisions,

which relate to local labor market conditions (wages, unemployment rates) and historical

grade retention rates in each concelho (municipality). Both the 9th grade and 12th grade

tests are measured on a 0 to 100 scale, but the means differ; the average test score in 9th grade

is 61.6 in math and 59.5 in Portuguese in comparison to 46.6 in math and 50.6 in Portuguese

in 12th grade. Students who experience retention have test scores below average and the

gap between retained and nonretained students widens from 9th to 12th grade. Moreover,

the gap in average test scores between retained and non-retained students is greater in math

than in Portuguese in both 9th and 12th grade. The largest gap, of 25 points, occurs for

21Students attend classes with a particular group of students, so class size is the same in both Portuguese
and math.
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Table 3: Descriptive statistics

Variable Category All Never Retained Retained
Gender Female 0.55 0.60 0.47
Age at High 16 or Under 0.79 0.89 0.66
School Entry 17 0.15 0.09 0.23

18 or Older 0.06 0.02 0.10
SES Low 0.33 0.29 0.38

High 0.67 0.71 0.62
Mother’s Ed Less than Basic/Unknown 0.45 0.39 0.53

Basic 0.18 0.17 0.19
High School 0.19 0.20 0.18
More than High School 0.18 0.24 0.10

Father’s Ed Less than Basic/Unknown 0.51 0.45 0.59
Basic 0.18 0.18 0.19
High School 0.18 0.19 0.15
More than High School 0.13 0.17 0.07

Note: Low socioeconomic status (SES) corresponds to children of parents whose income qualifies them for
a public subsidy. A basic education corresponds to nine years of schooling.

12th grade math.

The second panel in Table 4 shows average school and teacher characteristics. Overall,

school characteristics are similar for retained and nonretained students. The average school

size is around 517 and the average class size is 25. The average age of teachers is between 42

and 44, and over 70% of teachers are female. A lower proportion of math than Portuguese

teachers is female.

The third panel of Table 4 shows the means of the local labor market variables. High

school dropouts make on average 607 euros per month and high school graduates 750 euros

per month, a 24% premium. The employment rate is 90% for high school graduates and

88% for high school dropouts, which does not differ for the subset of students who were

retained or not. Lastly, we include the historical retention rate in the concelho as a potential

determinant of the probability of retention. This variable is measured three years prior,

at time t − 3, and captures the extent to which the municipality has a “culture” of grade

retention. The average value of this variable across all regions and all grades is 24%.
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Table 4: Test scores, school/teacher characteristics, labor market, and historical retention
rate variables

Variable Category All Never Retained Retained
Test Scores
Math 9th 61.6 68.8 51.7

(20.7) (19.6) (17.9)
12th 46.6 57.2 21.6

(23.8) (18.7) (13.5)
Portuguese 9th 59.5 64.8 52.2

(14.8) (13.8) (12.9)
12th 50.6 55.5 40.0

(16.7) (15.4) (14.6)
School/Teacher Characteristics

School Size 517 525 507
(272) (272) (271)

Class Size 24.8 24.7 24.9
(4.26) (4.33) (4.17)

Female Teacher Math 0.72 0.73 0.71
(0.451) (0.442) (0.459)

Female Teacher Portuguese 0.79 0.80 0.79
(0.405) (0.404) (0.406)

Teacher Age Math 42.6 43.7 41.3
(13.9) (12.8) (15)

Teacher Age Portuguese 44.2 44.3 44.0
(13.9) (13.7) (14.1)

Local Market/Retention History Variables

Local Wage (Euros/mo) HS Dropout 607 596 622
(93.8) (90.6) (95.9)

HS Graduate 750 733 775
(147) (140) (151)

Local Emp. Rate HS Dropout 0.88 0.88 0.88
(0.023) (0.023) (0.024)

HS Graduate 0.90 0.90 0.90
(0.022) (0.021) (0.022)

Hist. Retention Rate 24.1 23.6 24.7
(6.11) (6.06) (6.12)

Note: Standard deviations are shown in parentheses. The first observed 12th grade test score is used to
compute the mean for retained students.
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Table 5 shows grade progression patterns in math and Portuguese by grade and gender.

All students are required to take Portuguese, but only students pursuing the STEM subtrack

take the mathematics exam. Therefore, the sample sizes differ by track, which explains why

the dropout rates can also differ. In grade 10, in the STEM track, 87.5% of students complete

the grade and 12.5% drop out of school. Girls generally exhibit better performance than boys

in terms of grade progression. Girls have lower dropout rates and higher grade completion

in every grade, and, as shown in Table 3, lower retention rates. In grade 12, the completion

rate in mathematics drops substantially, to 59.2% for girls and 50.3% for boys. This is likely

due to the high rates of retention in mathematics in the 12th grade, as shown in Figure 2,

and the strong connection between retention and dropout (recall Figure 1), which we will

investigate further in the next section.

Table 5: High School Completion and Dropout rates by gender, track, and grade

STEM
All Girls Boys

Grade Complete Drop-out Complete Drop-out Complete Drop-out
10 0.875 0.125 0.899 0.101 0.851 0.149
11 0.784 0.091 0.815 0.083 0.752 0.099
12 0.547 0.236 0.592 0.224 0.503 0.249
All Tracks

All Girls Boys
Grade Complete Drop-out Complete Drop-out Complete Drop-out
10 0.904 0.096 0.929 0.071 0.875 0.125
11 0.835 0.070 0.871 0.058 0.791 0.083
12 0.734 0.100 0.792 0.079 0.665 0.126

6.3 Estimated model parameters

Table 6 shows the parameter estimates for the value-added knowledge accumulation models.

The first and third columns show the parameters for the first-time grade enrollees for math

and Portuguese. The second and fourth columns show the corresponding estimates for when

the grade is repeated. For the math test score, the lagged math score in the previous grade

is highly statistically significant, with a coefficient 0.94 for first-time enrollees and 0.80 for
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repeaters. Students who are older than their peers at the time of entering high school

(lagging behind, likely due to retentions in earlier grades) have significantly lower test score

gains. With regard to teacher characteristics, having a female teacher is associated with a

lower test score gain and having an older teacher a higher test score gain in the first-time

enrollees. The data do not contain information on teachers’ exact experience levels, but age

likely indicates greater experience. Larger class size lowers test scores for first time enrollees,

but the effect size is small (0.36 points per increase of 10 students). Youth whose mothers

have higher education levels show larger gains. Having a father with the highest education

level also significantly increases test scores. Females show substantially larger test score

gains than males in both math and Portuguese.

For the Portuguese knowledge accumulation equation, the estimated coefficient on the

lagged test score is also highly statistically significant, although the magnitude is lower than

for math - 0.85 for first grade enrollees and 0.70 for repeaters. Individuals who are older

relative to their peers again have significantly lower test score gains. Teacher age and gender

are not statistically significant. Children who come from families classified as low SES achieve

lower gains. As with math, test scores gains increase with the mother’s education level, and

females have greater gains. However, father’s education is not significant for Portuguese.

The last five rows of the table provide information on the estimated distribution of the

unobserved types and the estimated type-specific intercepts. The model included three

types and the estimated type proportions are roughly equal (33%, 35%, and 32%). The

type-specific intercepts are not statistically different from zero, suggesting that the other

observables included capture much of the heterogeneity across students in test score gains.

Table 7 shows the dropout parameter estimates for different grades. Students with higher

test scores have significantly lower dropout propensities. Local labor market conditions

are important determinants of dropout decisions. Specifically, a higher average income for

dropouts increases the dropout probability whereas a higher average income for high school

graduates (ceteris paribus) lowers it. Being retained in a prior year of high school sub-

stantially increases the dropout probability, as indicated by the variable Yrs Retained in
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Table 6: Estimated value-added equation parameters

Math Portuguese
First time Repeating First time Repeating

Estimate SE Estimate SE Estimate SE Estimate SE
Lagged Score, Ki,t−1 0.94 0.00 0.80 0.02 0.85 0.00 0.76 0.03
Constant -5.93 0.29 4.93 2.85 4.17 0.37 19.88 2.84
Relative Age at Gr 10 -4.35 0.14 -0.74 0.72 -1.99 0.08 -1.40 0.58
Missing School Info -1.18 0.34 5.96 3.23 0.73 0.42 -3.30 3.58
Female Teacher -1.62 0.24 2.00 2.40 0.26 0.28 0.51 2.55
Teacher Age 0.46 0.06 0.92 0.53 -0.03 0.06 -0.40 0.41
School size 0.33 0.23 -0.96 1.60 -0.05 0.16 -2.05 1.29
Class size -0.36 0.10 0.59 1.01 0.00 0.11 2.29 0.69
Low SES -0.88 0.18 0.07 1.47 -0.46 0.15 -1.69 1.31
Mother Basic Educ 1.30 0.20 4.21 1.33 0.35 0.13 -5.79 1.08
Mother HS Educ 1.90 0.18 1.41 1.48 0.44 0.12 0.79 1.26
Mother > HS Educ 2.01 0.21 3.82 1.89 1.48 0.15 1.14 1.21
Father Basic Educ 1 -0.45 0.18 -5.12 1.21 0.38 0.12 -1.52 1.05
Father HS Educ 2 -1.36 0.18 0.44 1.59 -0.07 0.13 -0.75 1.26
Father > HS Educ 3 1.51 0.22 2.35 2.09 0.26 0.16 -1.63 1.25
Female 3.00 0.12 1.60 0.91 0.67 0.08 2.27 0.73
Intercept type I (α1) 0.21 1.72 -0.33 2.69 0.16 1.20 -1.50 3.63
Intercept type II (α2) 0.00 1.74 0.50 3.51 1.42 1.25 1.06 3.98
σ2 85.09 0.98 138.89 9.33 85.09 0.98 138.89 9.33
P (Type1) 0.33 0.02 0.33 0.02 0.33 0.02 0.33 0.02
P (Type2) 0.35 0.01 0.35 0.01 0.35 0.01 0.35 0.01

Note: The table presents parameter estimates for the four value-added equations. The omitted education
category is less than basic. Missing School Info is an indicator for whether information was missing on the
student’s teacher variables or class size. School size is measured in thousands of students, class size is
measured in tens of students, and teacher age is measured in tens of years.

HS. Dropout is also higher for youth attending schools with larger classes. With regard

to parental background, mother’s education is also a statistically significant determinant of

dropout, with higher education levels being more protective against dropout. Father’s edu-

cation is often statistically significant as well, although the pattern of estimated coefficients

is not monotonic in education levels. Lastly, females have a lower probability of dropping

out in 10th grade but a higher probability in the 11th or 12th grade. Relative to the omitted

type, type 1 students learn more when enrolling in a course for the first time and less when

repeating a class, although these differences are not statistically significant.
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Table 7: Dropout equation parameters

Grade 10 Grade 11 Grade 12
Estimate SE Estimate SE Estimate SE

Intercept 3.54 0.61 -1.23 0.21 -1.21 0.14
Math -0.57 0.21 -0.79 0.14 -1.38 0.12
Portuguese -1.04 0.25 -0.79 0.16 -1.59 0.16
Local Employment: Dropout -1.10 0.38 -0.1 0.13 -0.37 0.09
Local Employment: Graduate -0.12 0.40 -0.64 0.13 -0.09 0.09
Local Income: Dropout 0.52 0.14 0.82 0.06 0.41 0.06
Local Income: Graduate -0.32 0.06 -0.39 0.04 -0.15 0.04
Relative Age at Gr 10 0.65 0.08 0.42 0.07 0.36 0.05
Yrs Retained in HS 2.58 0.29 2.47 0.12 1.38 0.09
School size -0.44 0.15 -0.05 0.12 0.49 0.12
Class size 1.41 0.15 1.33 0.08 0.94 0.06
Low SES 0.12 0.08 0.21 0.07 0.06 0.09
Mother Basic Educ 1 1.70 0.13 1.71 0.10 -1.47 0.21
Mother HS Educ 2 -0.38 0.15 0.15 0.13 -0.14 0.10
Mother > HS Educ 3 -0.86 0.22 -0.20 0.18 -0.26 0.19
Father Basic Educ 1 -0.40 0.12 -0.63 0.09 -0.50 0.12
Father HS Educ 2 -0.18 0.12 -0.50 0.10 -0.17 0.12
Father > HS Educ 3 -0.53 0.21 -0.91 0.19 -0.82 0.39
Female -0.38 0.24 0.23 0.11 0.19 0.10
Intercept type I (α1) 0.09 2.38 0.33 0.51 0.42 0.29
Intercept type II (α2) 0.30 2.50 0.35 0.45 0.39 0.31
Non-STEM ... ... ... ... 0.00 0.11

Note: The omitted education category is less than basic. The coefficients and standard errors on math and
Portuguese knowledge have been scaled so that they represent the effects of a 100-point increase in these
scores. School size is measured in thousands of students and class size is measured in tens of students.
Local income is measured in 100s of Euros and the employment rate has been multiplied by 10.

Table 8 shows the estimated model coefficients for the grade-specific retention equations,

where we estimate two models for grade 12, because students can fail in math or Portuguese

(or both) in this grade. As expected, the retention probability depends significantly on

knowledge (test scores). We know that test scores are one of the factors that schools use

along with grades in making retention decisions. Students are also more likely to be retained

if a concelho has a culture of retention (as indicated by the retention rate in the three years

prior, which serves as an exclusion restriction in the model). Students who are older relative
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to peers are much more likely to be retained. The retention probability depends positively on

school size and class size in 10th grade but negatively on class size in 11th and 12th grade.

The family’s SES status is not a significant determinant of retention in most equations.

Youth whose mothers have only a basic education are more likely to be retained in the 10th

grade. Lastly, females have a lower retention probability in every grade and subject. Finally,

we allow for non-STEM students to have different baseline probability of dropout in grade

12, although this turns out to not differ from zero.

Table 8: Retention equation parameters

Grade 10 Grade 11 Grade 12
Math Portuguese

Estimate SE Estimate SE Estimate SE Estimate SE
Intercept 1.44 0.06 -1.12 0.08 -0.33 0.07 -1.02 0.06
Math -2.26 0.06 -0.57 0.09 -1.41 0.05 ... ...
Portuguese -2.43 0.09 -0.95 0.10 ... ... -1.41 0.07
Historical Retention Rate 0.42 0.13 2.28 0.20 -0.17 0.16 -0.19 0.11
Relative Age at Gr 10 0.06 0.02 0.02 0.03 0.82 0.02 0.34 0.03
School size 0.25 0.04 0.25 0.05 0.07 0.06 0.05 0.05
Class size 0.22 0.02 -0.08 0.03 -0.17 0.02 -0.13 0.02
Low SES -0.01 0.02 0.06 0.04 -0.40 0.05 -0.01 0.04
Mother Basic Educ 0.36 0.03 -0.10 0.05 0.13 0.05 -0.03 0.05
Mother HS Educ -0.24 0.03 -0.28 0.05 -0.14 0.05 -0.12 0.05
Mother > HS Educ 0.13 0.04 -0.17 0.05 -0.59 0.09 -0.13 0.07
Father Basic Educ -0.21 0.03 0.11 0.05 -0.12 0.05 0.10 0.04
Father HS Educ 0.00 0.03 0.19 0.05 -0.21 0.06 0.05 0.05
Father > HS Educ -0.02 0.04 0.17 0.05 -0.56 0.08 -0.08 0.07
Female -0.31 0.02 -0.24 0.03 -0.41 0.04 -0.12 0.03
Intercept type II (α1) -0.40 0.27 0.13 0.34 0.75 0.56 0.46 0.15
Intercept type II (α2) -0.03 0.29 0.10 0.37 -0.09 0.57 0.15 0.16
Non-STEM -1.98 0.04 -0.65 0.06 ... .... ... ...

Note: Retention is grade-specific in grades 10 and 11 but grade-subject-specific in grade 12. Retention in
grade 12 in Math depends on math scores but not Portuguese scores and vice versa for retention in grade
12 in Portuguese. The omitted education categories are less than basic. The coefficients and standard
errors on math and Portuguese knowledge have been scaled so that they represent the effects of a 100-point
increase in these scores. The historical retention rate is measured on a 0-1 scale
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6.4 Goodness-of-fit

Our estimation targets over nine hundred moments. Tables C-1 and C-2 in Appendix C

show the model fit for the proportion of students with each history. The tables show that

the model does a good job of matching the most common histories for both the STEM

and non-STEM students. For example, the STEM history 10-11-12X10-11-12 is followed by

50.3% of individuals in the data and 54.3% of individuals in model simulations, while the

path 10-10dX10-10d constitutes 8.77% of individuals in the data and 11.2% in the model.

The model fit is not quite as good for paths that feature multiple retentions in which students

stay in school for some time after the retention, such as 10-11-12-12-12X10-11-12, 10-10-11-

11dX10-10-11-11d, and 10-11-11-11dX10-11-11-11d. The next section analyzes treatment

effects for several different subgroups, including those students who graduate high school

within four years and for whom the model fit is particularly good.

7 Grade retention impacts

7.1 Average impacts

Our main goal in estimating the above dynamic educational production function model is to

be able to evaluate grade retention effects, on both test scores and educational attainment, by

simulating these outcomes in a counterfactual setting in which retention has been eliminated

and comparing it with the status quo. Table 9 shows the effects of grade retention on 12th

grade average test scores for three different subgroups: those who were retained in 10th or

11th grades, those who were retained in 12th grade, and those who were retained in any

year and graduated high school within four years (rather than 3). The fourth column shows

the proportion of students with a 12th grade test score who fall in each of these categories.

The table shows both the impact on the raw test score and in terms of standard deviations

(S.D.). Retention has positive impacts in both math and Portuguese on average, ranging

from 0.17-0.5 s.d. The largest effects for math are observed for 12th grade retention. The

retention effects on Portuguese test scores are approximately equal regardless of the grade
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in which the student is retained.

Table 9: Retention impacts on 12th grade test scores

Math Portuguese
Subsample Raw S.D. Raw S.D. Proportion
Retained in 10th/11th Grades 3.93 0.17 8.20 0.48 0.11

(1.27) (0.05) (0.87) (0.05) (0.01)
Retained in 12th Grade 5.11 0.22 8.42 0.50 0.08

(2.79) (0.12) (1.44) (0.08) (0.03)
Graduate in 4 Years 4.68 0.20 8.53 0.50 0.13

(1.05) (0.04) (0.71) (0.04) (0.02)

Note: Retention impacts are estimated for the subset of students who enroll in 12th grade under both the
status quo and counterfactual simulations. The standard deviations on the 12th grade math and
Portuguese exams are 23.6 and 17.0 points. The column labeled proportion indicates the proportion in the
simulation who take an exam in the 12th grade. Standard errors, obtained from 100 parametric bootstrap
replications, are shown in parentheses.

We also consider the effect of eliminating grade retention on the probability of dropping

out. Table 10 shows that retention’s effect on dropout is large. Among students who are

retained (the treated), retention increases the probability of dropping out by 56 percentage

points for boys and and 49 percentage points for girls. The high dropout rates observed in

the data among retained students, 80% for all students, can be attributed both to causal

effects and selection, but the causal effects are more salient (0.53/0.80 > 0.5).

Table 10: Retention impacts on drop-out proportions

Dropout proportion Impact of retention
All Boys Girls All Boys Girls

All students 0.37 0.45 0.30 0.18 0.24 0.12
(0.00) (0.00) (0.00) (0.01) (0.01) (0.01)

Retained students (TT) 0.80 0.83 0.76 0.53 0.56 0.49
(0.00) (0.00) (0.00) (0.02) (0.02) (0.02)

Note: Results are shown for all students and for retained students (treatment on the treated). Dropout
proportions are directly from the data, while retention impacts are calculated on the basis of model
simulations.

We next examine in Table 11 how 12th grade average retention effects vary with students’
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initial ranks in the 9th grade test score distribution (prior to entering high school). In both

math and Portuguese, students who begin the ninth grade with a test score disadvantage

benefit more from retention. For math, students in the bottom tercile in the ninth grade

experience about a 0.3 s.d. increase in test scores and students in the middle tercile a 0.2

s.d. increase, while students in the top tercile benefit little from retention. In Portuguese,

the gains are more pronounced. Students scoring in the bottom tercile in Portuguese in the

ninth grade experience about a 0.6 s.d. increase in test scores, while students in the middle

and top terciles experience about a 0.5 and 0.4 s.d. increase.

Table 11: Retention impacts on 12th grade scores by 9th grade test score tercile

Bottom Tercile Middle Tercile Top Tercile
Subsample Raw S.D. Raw S.D. Raw S.D.

Math
Retained in 10th/11th Grades 7.50 0.32 3.75 0.16 1.42 0.06

(1.46) (0.06) (1.25) (0.05) (1.42) (0.06)
Retained in 12th Grade 8.45 0.36 4.68 0.20 1.89 0.08

(2.41) (0.10) (2.73) (0.12) (3.04) (0.13)
Graduate in 4 Years 8.55 0.36 4.73 0.20 1.99 0.08

(1.15) (0.05) (1.05) (0.04) (1.20) (0.05)
Portuguese

Retained in 10th/11th Grades 10.02 0.59 7.87 0.46 5.71 0.34
(0.80) (0.05) (0.88) (0.05) (1.12) (0.07)

Retained in 12th Grade 9.72 0.57 8.19 0.48 6.91 0.41
(1.35) (0.08) (1.46) (0.09) (1.60) (0.09)

Graduate in 4 Years 10.38 0.61 8.24 0.49 6.17 0.36
(0.69) (0.04) (0.71) (0.04) (0.92) (0.05)

Note: Retention impacts are estimated for the subset of students who enroll in 12th grade under both the
status quo and counterfactual simulations. The standard deviations on the 12th grade math and
Portuguese exams are 23.6 and 17.0 points.

We also examine the retention impacts on dropping out by initial 9th grade math exam in

Table 12. The table shows that students in the bottom tercile are much more likely to drop

out of high school. This is especially true if the students are retained: 87% of these retained

students who score in the bottom third in 9th grade end up dropping out of high school.

Retention causes 55% of these retained students to drop out, meaning that 87% - 55% =
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32% of of them drop out in both the retention and no-retention simulations. Retention is

therefore a significant cause of dropping out for these students.

Table 12: Retention impacts on dropout by 9th grade math test score tercile

Proportion Impact of retention
Bottom Middle Top Bottom Middle Top

All Students 0.60 0.38 0.10 0.27 0.18 0.08
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Retained Students 0.87 0.75 0.61 0.55 0.54 0.45
(0.01) (0.02) (0.03) (0.01) (0.02) (0.03)

Note: The table presents estimates of the effect of grade retention on test scores for three treated
subgroups disaggregated by initial (grade 9) test score in math. Dropout proportions come directly from
the data, while retention impacts are calculated on the basis of model simulations.

In Table 13, we disaggregate the retention impacts by gender. The last column shows

the proportion of the sample within each category. Impacts are larger in Portuguese than

math for both girls and boys. The impacts for girls are also slightly larger than for boys.

We present additional evidence of impact heterogeneity in Appendix C. Table C-3 shows

that the effects of retention on test scores are very similar by SES status. However, Table

C-4 shows that the impact of retention varies by the student’s age relative to the majority

age at his/her grade level. Students who begin high school at ages older than the modal age

for their grade experience greater test score gains in math from retention, but the effect on

Portuguese scores varies little with age.

Given our finding in Table 10 that retention substantially increases dropping out, we

would expect to see impacts on high school completion rates. According to the estimates

reported in Table 14, retention reduces high school completion rates by 21 percentage points,

with larger effects for boys (29 pp) than for girls (14 pp).

7.2 Retention Impact Heterogeneity

We next explore whether retention effects are heterogeneous across students. Figures 3 and

4 graph the distribution of 12th grade test score impacts for the same three subsamples
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Table 13: Retention impacts on 12th grade test scores by gender

Math Portuguese
Boys Raw S.D. Raw S.D. Proportion
Retained in 10th/11th Grades 3.66 0.15 7.89 0.46 0.13

(1.25) (0.05) (0.87) (0.05) (0.01)
Retained in 12th Grade 4.58 0.19 7.75 0.46 0.10

(2.72) (0.12) (1.42) (0.08) (0.02)
Graduate in 4 Years 4.38 0.19 8.17 0.48 0.15

(2.72) (0.12) (1.42) (0.08) (0.02)
Girls
Retained in 10th/11th Grades 4.38 0.19 8.62 0.51 0.08

(1.47) (0.06) (0.96) (0.06) (0.01)
Retained in 12th Grade 6.00 0.25 9.06 0.53 0.06

(3.03) (0.13) (1.56) (0.09) (0.01)
Graduate in 4 Years 5.13 0.22 8.98 0.53 0.10

(1.27) (0.05) (0.8) (0.05) (0.01)

Note: Retention impacts are estimated for the subset of students who enroll in 12th grade under both the
status quo and counterfactual simulations. The standard deviations on the 12th grade math and
Portuguese exams are 23.6 and 17.0 points. The column labeled proportion indicates the proportion in the
simulation who take an exam in the 12th grade.

Table 14: Effect of Retention on High School Completion

All Boys Girls
Status Quo 0.74 0.65 0.81

(0.01) (0.02) (0.01)
No Retention 0.94 0.94 0.95

(0.00) (0.01) (0.00)
Effect of Retention -0.21 -0.29 -0.14

(0.01) (0.02) (0.01)

of retained students that were considered in the last section and for math and Portuguese.

Although the overall average impacts are positive, the figures reveal a wide variance with a

substantial fraction of students experiencing negative impacts. The variance is higher and

the incidence of negative impacts greater for 10th\11th grade retention than for 12th grade.

Table 15 shows the proportion of students who experience a negative 12th grade test

score impact as a result of being retained, which ranges from 26% to 41% across the three

groups. Despite the overall average test score impacts being positive, substantial numbers
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Figure 3: Distributional impacts on math scores, by subgroup

Figure 4: Distributional impacts on Portuguese scores, by subgroup
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Table 15: Proportion of students with a negative impact by subject

Math Portuguese
Retained in 10th/11th Grades 0.41 0.30

(0.03) (0.02)
Retained in 12th Grade 0.35 0.26

(0.07) (0.04)
Graduate in 4 Years 0.38 0.29

(0.03) (0.02)

of students do not experience gains, even among the students who do not drop out prior to

taking the 12th grade test.

Are schools retaining the “right” students, that is, the ones most likely to benefit from

retention? To investigate this question, we simulate a world in which everyone is retained

in the 10th grade versus a world in which no one is retained in any grade, and compare the

resulting 12th grade test scores across the two scenarios.22 We repeat this exercise for 11th

grade and 12th grade (in both math and Portuguese). In each case, we derive individual

treatment impacts and nonparametrically regress these treatment impacts on the predicted

probability of retention for that student (derived from the retention model).

Figure 5 displays the results of these nonparametric regressions. In panels (a), (b) and

(c), the change in scores in both math and Portuguese attributable to retention are plotted

against the probability of retention in grades 10, 11, and 12 respectively. We use local

linear regression with an Epanechnikov kernel and a bandwidth of 0.10 for all plots, and the

95% confidence bands depicted in the picture are based on asymptotic standard errors. We

plot the regressions only where there is positive density for the retention probabilities, as

indicated in Figure 5-(d).

The relationship between retention probability and the treatment impact on math exam

scores is upward-sloping in all grades. This means that students who are most likely to be

retained are the ones benefiting the most from retention. For Portuguese test scores, the

same pattern of greater gains at higher probabilities of retention holds in 10th grade, but

22Specifically, we compare test scores after 4 years in high school in the first setting with the scores obtained
after three years in the second setting.
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Figure 5: How 12th grade test score impacts vary by the retention year and the probability
of retention

(a) 10th Grade (b) 11th Grade

(c) 12th Grade (d) Density

Note: Panels (a), (b), and (c) depict nonparametric regressions of the retention test score effect on the
probability of retention in each grade for the sample of students who take the 12th grade test. The
regressions are estimated using local linear regression with an Epanechnikov kernel and a bandwidth of
0.10. 95% confidence intervals are indicated by shaded regions. Panel (d) depicts the density of retention
probabilities by grade and subject.

there little evidence of sorting, either positive or negative, in later grades.

Figure 6 displays the estimated nonparametric regressions of the dropout treatment effect

on the probability of being retained in each grade and subject. As before, for each grade,

the model compares a world without retention to a world in which every student is retained

in that grade. The treatment effect is computed as the difference in indicator variables for

whether the student dropped out at any point in high school across the two settings. The

figures show that, in every grade and subject, students who are more likely to be retained

are more likely to drop out as a result of retention. The relationship is also concave, with

marginal increases in retention probability from initially low levels affecting dropout more
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than increases from high levels.

Figure 6: How dropout impacts vary by the retention year and the probability of retention

(a) 10th Grade (b) 11th Grade

(c) 12th Grade, Math (d) 12th Grade, Portuguese

Note: The figures depict nonparametric regressions of the dropout effect of retention on the model-derived
probability of retention by grade and subject. The regressions are estimated using local linear regression
with an Epanechnikov kernel and a bandwidth of 0.10. 95% confidence intervals are shaded in grey.

To summarize, the students being retained are the ones with the greatest potential test

score benefits from retention, on average. However, grade retention also increases the risk of

dropping out. These findings corroborate findings from RDD studies, which typically con-

clude that retention improves academic performance but also increases dropout, particularly

if the retention occurs in high school. We have also shown, though, that an RD estimator ap-

plied to Portugal would understate the benefits from grade retention for retained students,

because the impact estimates are greatest for those with the highest predicted retention

probabilities, e.g. those who would not be near the threshold for retention. A complete

analysis of the costs and benefits of grade retention policies must simultaneously account for

the benefits accruing from increased cognitive skills and the costs due to increased dropout
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and reduced educational attainment, a task to which we now turn.

8 Towards an Optimal Retention Policy

We have seen that retention raises test scores conditional on staying in school but also

increases the probability of dropping out. An additional factor to consider is that retained

students who stay in school will typically enter the labor market later and forego a year’s

salary (or more). Any notion of an optimal retention policy must trade off the possible

earnings benefits accruing from increased cognitive ability with the costs incurred because

of delayed labor market entry and reduced educational attainment. Compulsory schooling

laws can mitigate the costs to some extent if they are effective in preventing dropout.

In this section, we consider grade retention’s multiple effects on skill accumulation and

educational attainment within a single framework and show how the optimal retention policy

varies depending on the labor market returns to cognitive skills. Our analysis assumes that

Portugal’s current compulsory schooling law, which requires that individuals stay in school

until age 18, is enforced.

Performing the cost benefit calculations requires predicting lifetime earnings under dif-

ferent grade retention policies, where retention potentially affects individuals’ educational

attainment, age of labor market entry, and cognitive skill levels. As shown in section 7, there

is substantial individual heterogeneity in retention impacts. Below, we use a standard Min-

cer log wage model to predict wages, which we then convert to present discounted lifetime

earnings streams, taking into account retention policy effects, which can vary at the indi-

vidual level, on educational attainment, cognitive skills, and the age of labor market entry.

Unfortunately, there are no data sets available for Portugal that include measures of wages

and of math and Portuguese skills. However, we consider a range of plausible estimates

for returns to these skills, drawing on evidence reported in the literature using data sets

for other countries, and we compute the optimal retention rate as the one that maximizes

average expected lifetime earnings.23 Our findings enable us to answer the question of how

23See, for example, Chetty et al. (2011), Dougherty (2003), Heckman et al. (2006), Cawley et al. (2001),
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high the return to cognitive skills would need to be to justify the policy that was in place at

the time of our data collection of retaining 44% of students.

To estimate the returns to education in Portugal, we use employee-employer matched

data derived from the Quadros de Pessoal data set. We estimate a standard Mincer-type

log wage regression:

lnwi,t = α + β ∗ Si + δ0expi,t + δ1exp
2
i,t + εi,t , (10)

where lnwi,t is the log hourly wage measured in Euros for individual i in year t, Si is

educational attainment, and expi,t is Mincer experience (age − years of schooling − 6).24

We simulate the wage for individual i at age a under retention policy P as follows:

wi,t(a, Si, K
M
i , K

P
i , εi,t, P ) = exp(lnŵi,t(a, Si(P )) + φ1K

M
i (P ) + φ2K

P
i (P ) + εi,t) , (11)

where we vary φ1 and φ2 according to a range of values found in the literature. The retention

policy simultaneously affects educational attainment, Si(P ), and knowledge in math and

Portuguese, KM
i (P ) and KP

i (P ), which we standardize by their subject-specific means and

standard deviations in the data. After simulating earnings for each individual in each year,

we then compute annual earnings by multiplying the wage by 170 hours per month and 14

months of pay per year (workers in Portugal receive both holiday pay and a Christmas bonus

each worth one month of pay), and discount future years using an interest rate of 2%.25 We

calculate lifetime discounted earnings using the following expression:

Yi(P ) =
a=65∑
a=aP

(
1

1 + r
)a−19wi,t(a)(a, Si, K

M
i , K

P
i , εi,t, P )× 170× 14 (12)

Murnane et al. (2000). A recent study by Watts (2020) uses a longitudinal UK data set, the National
Child Development Study, to estimate associations between math and reading skills measured at age 16 and
subsequent earnings at four ages between 33-50. The effects reported in the paper of a standard deviation
increase in test scores on yearly earnings range over the lifecycle from 3% to 11% in math and from 4% to
12% in English.

24Years of schooling includes any retention years. Parameter estimates for equation (10) are given in
Appendix table C-5.

25We assume in our cost-benefit calculation that individuals work at every age after high school graduation.
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where aP is the age of labor market entry, which may vary with the policy, thereby accounting

for the foregone earnings due to delayed labor market entry. The net benefit in terms of

lifetime earnings of the status quo policy, P̃ , relative to a world with no retention is

∆ =
1

N

N∑
i=1

Yi(P̃ )− Yi(0).

Our calculations assume that the returns to knowledge in math and Portuguese are

equivalent: φ1 = φ2 = φ. If, say, φ = 0.05, then ∆ = −4, 781, meaning that the costs

of the retention policy exceed the benefits by 4,781 Euros over the course of the average

student’s lifetime.26 In the ensuing analysis, we vary φ between 0.05 and 0.15 and solve

for the retention policy that maximizes discounted lifetime earnings in (12) assuming that

compulsory schooling laws are enforced. Specifically, for a given value of φ, we add a constant

term to each retention equation (equations 3 through 6) and search over the value of this

constant that maximizes discounted lifetime earnings. We then simulate the model under

this optimal policy and report the fraction of students retained in any year. We repeat this

exercise, varying the value of φ.

Figure 7 plots the implied fraction of high school students who are retained in any grade

under the optimal retention policy for φ ranging between 0.05 and 0.15. For φ = 0.05,

for example, the optimal retention policy is to not retain any students. As the returns

increase, however, the cognitive benefits of retention begin to outweigh the costs of reduced

educational attainment and delayed labor market entry. For returns of about 12%, which is

the maximum return to skill estimated by Watts (2020) in the UK when controlling for family

background and health, it is optimal to retain 24.8% of students. This retention rate is far

below the rate of 44% observed in the Portuguese high school data we used in our analysis.

The returns to cognitive skills would need to be high, about 14% per standard deviation, to

justify the existing retention rate. Overall, the figure shows that, for the average student,

whether retention is beneficial or costly in the long run depends on how much the labor

market rewards math and language skills.

26If compulsory schooling laws were not enforced and students were permitted to drop out before they
reach age 18, then the costs would be even larger and would exceed the benefits by 6,234 Euros.
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Our cost-benefit analysis is subject to some caveats. First, the calculations assume that

individuals are continuously employed. There is a small literature, including studies in

economics, sociology and psychology, that analyzes whether retained students experience

adverse labor market consequences in terms of a higher probability of unemployment and

lower levels of job security. Baert and Picchio (2021) summarizes much of this literature

and describes some studies finding evidence of adverse effects on employment.27 Second, our

calculations only consider private earnings returns to schooling and cognitive skills. If there

are substantial social returns, then the rankings of the different policy scenarios could be

altered. Third, our cost-benefit analysis also did not account for possible positive impacts on

future generations occurring through the inter-generational transmission of human capital.

As seen in section 5, mother’s and father’s education levels are important determinants of

youth’s academic achievement. Allowing for inter-generational transmission of human capital

would likely raise the benefits to the retention policy analyzed in this paper. Finally, we

consider the costs and benefits of retention for the student only. Taking into account the

costs of educating retained students for an additional year will lower the societal benefits of

retention and require still higher returns to knowledge to justify the existing policy.

27Baert and Picchio (2021) also present the results of an RCT that they carried out in Belgium that
experimentally varied grade retention information on fictitious resumes. Their results showed that grade
retention did not significantly affect positive call-back by employers but made it less likely that individuals
got called back for jobs with a large training component.
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Figure 7: Optimal retention rates as a function of returns to knowledge

(a) Retention rate

(b) Discounted lifetime income

Note: The figures depicts the relationship between the returns to a standard deviation increase in
knowledge along the x-axis and the fraction of students who are retained under the optimal retention policy
in panel (a) and the expected discounted lifetime income under this policy in Euros (2013) in panel (b).
For this calculation, we set the returns to math and Portuguese knowledge to be equal and vary this value
along the x-axis. The assumptions used to compute expected lifetime income are detailed in section 8.
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9 Conclusions

In recent decades, Portugal has made great strides in improving its population’s skill levels.

Between 2000 and 2020, the fraction of employees with basic education or less fell from nearly

80% of the total workforce to 40%. Over the same time period, employees with higher

education increased from 9% to 30% of the workforce. In addition, there was significant

improvement in Portuguese students’ relative performance in international comparative tests.

Portugal’s scores in three PISA subjects – Math, Reading, and Science – have been above the

OECD average since 2015. Yet, Portugal continues to face significant challenges, including

unusually high rates of grade retention and dropout.

This paper developed and implemented a dynamic value-added modeling approach for

analyzing grade retention impacts. The model captures the cumulative nature of the edu-

cational production process including the additional learning that takes place during years

when students repeat grades. To our knowledge, this type of switching value-added model,

used to explicitly model how learning for retained children takes place over two separate

years, has not been considered in the prior retention literature. The model incorporates rich

observable heterogeneity on student, parent, and school characteristics as well as unobserved

heterogeneity (in the form of unobserved types) that affect achievement outcomes as well as

grade retention and dropout decisions.

The model estimates show fairly large positive average effects of retention on test scores

for retained students, about 0.2 s.d.in math and 0.5 s.d.in Portuguese. However, we also find

that retention discourages students from finishing high school. The causal effect of retention

on dropout is a 53 pp increase in the probability of dropping out among retained students.

The increase in dropout is greater for boys than girls and for students who are older than

their same-grade peers. We uncover a pattern whereby students who entered high school

with lower test scores experience the greatest cognitive gains from grade retention but also

the greatest increase in dropout.

Our distributional analysis of retention impacts reveals substantial individual level hetero-
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geneity. Despite the overall average retention impacts being positive, about 30% of students

experience negative impacts on 12th grade test scores. Some students finish high school with

greater skill levels in math and Portuguese as a result of grade retention, but other students

get discouraged and experience lower test scores or drop out of school altogether.

We conduct a cost-benefit analysis that compares the life-time earnings streams under

different retention policies, accounting for individual impact heterogeneity as estimated by

our model. The analysis reveals that the foregone earnings cost due to delayed labor mar-

ket entry and reduced educational attainment (for those induced to drop out because of

retention) exceed the expected gain accruing from earnings changes unless the labor market

returns to cognitive skill are greater than 12%. For typical values of the wage returns to

knowledge that have been estimated in the literature, the current retention policy is not, on

average, beneficial to students. A modified policy that retains a lower proportion of students

and strictly enforces compulsory schooling laws to mitigate the dropout problem would lead

to greater lifetime earnings gains. Portugal has moved in the direction of this optimal policy

in recent years, with retention rates falling steadily over the last decade. The lessons de-

rived from the Portuguese context may be of interest to other European countries with high

retention rates.

49



References

Daniel A Ackerberg. A new use of importance sampling to reduce computational burden in

simulation estimation. QME, 7(4):343–376, 2009.

Francesco Agostinelli and Matthew Wiswall. Estimating the technology of children’s skill

formation. Technical report, National Bureau of Economic Research, 2016.

Chiharu S Allen, Qi Chen, Victor L Willson, and Jan N Hughes. Quality of research design

moderates effects of grade retention on achievement: A meta-analytic, multilevel analysis.

Educational Evaluation and Policy Analysis, 31(4):480–499, 2009.

Joshua Angrist and Guido Imbens. Identification and estimation of local average treatment

effects, 1995.

Stijn Baert and Matteo Picchio. A signal of (train) ability? grade repetition and hiring

chances. Journal of Economic Behavior & Organization, 188:867–878, 2021.

Erich Battistin and Antonio Schizzerotto. Threat of grade retention, remedial education and

student achievement: Evidence from upper secondary schools in italy. 2012.

Stephen V Cameron and James J Heckman. Life cycle schooling and dynamic selection bias:

Models and evidence for five cohorts of american males. Journal of Political economy, 106

(2):262–333, 1998.

M Campos and Hugo Reis. Revisiting the returns to schooling in the portuguese economy.

Banco de Portugal Economic Studies, 3(2):1–28, 2017.

Pedro Carneiro, Karsten T Hansen, and James J Heckman. Estimating distributions of

treatment effects with an application to the returns to schooling and measurement of the

effects of uncertainty on college, 2003.

John Cawley, James Heckman, and Edward Vytlacil. Three observations on wages and

measured cognitive ability. Labour economics, 8(4):419–442, 2001.

50



Raj Chetty, John N Friedman, Nathaniel Hilger, Emmanuel Saez, Diane Whitmore Schanzen-

bach, and Danny Yagan. How does your kindergarten classroom affect your earnings?

evidence from project star. The Quarterly journal of economics, 126(4):1593–1660, 2011.

Bart Cockx, Matteo Picchio, and Stijn Baert. Modeling the effects of grade retention in high

school. Journal of Applied Econometrics, 34(3):403–424, 2019.

Flavio Cunha, James J Heckman, Lance Lochner, and Dimitriy V Masterov. Interpreting

the evidence on life cycle skill formation. Handbook of the Economics of Education, 1:

697–812, 2006.

Flavio Cunha, James J Heckman, and Susanne M Schennach. Estimating the technology of

cognitive and noncognitive skill formation. Econometrica, 78(3):883–931, 2010.

Christopher Dougherty. Numeracy, literacy and earnings: evidence from the national longi-

tudinal survey of youth. Economics of education review, 22(5):511–521, 2003.

Eric R Eide and Mark H Showalter. The effect of grade retention on educational and labor

market outcomes. Economics of Education review, 20(6):563–576, 2001.

Ozkan Eren, Briggs Depew, and Stephen Barnes. Test-based promotion policies, dropping

out, and juvenile crime. Journal of Public Economics, 153:9–31, 2017.

Maria Ferreira, Bart Golsteyn, and Sergio Parra-Cely. The effect of grade retention on

secondary school performance: Evidence from a natural experiment. 2018.
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Appendix A: Moments used in estimation

This appendix describes the moments used in estimation. As discussed in the main text,

the estimation is based on three types of moments for students with different schooling

trajectories, as summarized by their history hi, which was defined in section 5. The mo-

ments are formed from three types of simulated dependent variables: 1hi=h, 1hi=hK
g
i,t, and

1hi=hK
g
i,t

2. That is, the moments depend on the proportion of students with each history,

the mean knowledge levels (test scores) and the second moment of test scores for both math

and Portuguese for students with different histories. Table 16 lists the histories that form

the basis of the SMM estimation for the STEM track students together with the percentage

of students in the estimation sample that have each history.

Table 16: Targeted Histories, STEM

History Percentage
10-11-12X10-11-12 50.3%
10-10dX10-10d 8.77%
10-11-12-12-12X10-11-12 or 10-11-12-12-12dX10-11-12 5.20%
10-11-12-12X10-11-12 4.78%
10-11-12dX10-11-12d 2.09%
10-10-10dX10-10-10d 2.52%
10-11-12-12dX10-11-12 3.07%
10-11-11dX10-11-11d 2.12%
10-10-11-12X10-10-11-12 or 10-10-11-12dX10-10-11-12 3.36%
10-10-11-11dX10-10-11-11d 2.11%
10-11-11-11dX10-11-11-11d 1.66%
10-11dX10-11d 1.53%
10-11-11-12X10-11-11-12 1.20%
10-11-12-12X10-11-12-12 0.11%
10-11-12-12-12dX10-11-12-12-12d or 10-11-12-12-12X10-11-12-12-12 0.25%

SUM: 89.1 %

Altogether, we target fifteen histories, which represent 89.1 percent of the STEM students

in our estimation sample. For those histories in which twelfth grade math and Portuguese

test scores are observed (histories 1, 3, 4, 7, 9, 13, 14, and 15), we additionally target

moments involving the 12th grade test scores.
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Moments are formed by multiplying the three types of endogenous variables (histories,

test scores, and squared test scores) by exogenous variables and summing over all individuals.

The moments, mi, for those individuals enrolled in the STEM track are as follows. The

histories h1, . . . , h15 correspond to the fifteen targeted STEM histories in Table 16.

mi =

M1

M2

M3

 (13)

where

M1 =



1hi=h1
· (1,K9,M

i,0 ,K9,P
i,0 , I

′
i,1, X

′
i, H

R
i,1−3, L

′
i,0)′

1hi=h2
· (1,K9,M

i,0 ,K9,P
i,0 , I

′
i,1, X

′
i, H

R
i,1−3, L

′
i,0)′
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· (1,K9,M

i,0 ,K9,P
i,0 , I

′
i,1, X

′
i, H

R
i,1−3, L

′
i,0)′
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′
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′
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R
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′
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′
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R
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′
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′
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R
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′
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
,

The moments in M1 represent covariances between the variables in the retention and

dropout equations and the history indicators, which identify the parameters of the dropout

and retention equations. The moments in M2 are covariances between the covariates in

the value added equations and the 12th grade math and Portuguese test scores for both

retained and non-retained students. These moments identify the parameters in the value

added equations. The moments in M3 are squared test scores for students with each history

in which test scores are observable. These moments identify the variances of the error terms

in the value added equations.
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M2 =
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′

1hi=h9
K12,P

i,4 · (1,K9,P
i,0 , I

′
i,4, X

′
i)
′

1hi=h13
K12,M

i,3 · (1,K9,M
i,0 , I ′i,1, X

′
i)
′

1hi=h13
K12,P

i,3 · (1,K9,P
i,0 , I

′
i,1, X

′
i)
′

1hi=h14
K12,M

i,3 · (1,K9,M
i,0 , I ′i,3, X

′
i)
′

1hi=h14
K12,P

i,3 · (1,K9,P
i,0 , I

′
i,3, X

′
i)
′

1hi=h14
K12,M

i,4 · (1,K9,M
i,0 , I ′i,4, X

′
i)
′

1hi=h14
K12,P

i,4 · (1,K9,P
i,0 , I

′
i,4, X

′
i)
′

1hi=h15
K12,M

i,3 · (1,K9,M
i,0 , I ′i,3, X

′
i)
′

1hi=h15
K12,P

i,3 · (1,K9,P
i,0 , I

′
i,3, X

′
i)
′

1hi=h15
K12,M

i,4 · (1,K9,M
i,0 , I ′i,4, X

′
i)
′

1hi=h15
K12,P

i,4 · (1,K9,P
i,0 , I

′
i,4, X

′
i)
′


,

M3 =



1hi=h1
K12,M

i,3

2

1hi=h1K
12,P
i,3

2

1hi=h3
K12,M

i,3

2

1hi=h3
K12,P

i,3

2

1hi=h3K
12,M
i,4

2

1hi=h4
K12,M

i,3

2

1hi=h4K
12,P
i,3

2

1hi=h4
K12,M

i,4

2

1hi=h7
K12,M

i,3

2

1hi=h7K
12,P
i,3

2

1hi=h9
K12,P

i,4

2

1hi=h13
K12,M

i,3

2

1hi=h13K
12,P
i,3

2

1hi=h14
K12,M

i,3

2

1hi=h14
K12,P

i,3

2

1hi=h14K
12,M
i,4

2

1hi=h14
K12,P

i,4

2

1hi=h15
K12,M

i,3

2

1hi=h15K
12,P
i,3

2

1hi=h15
K12,M

i,4

2

1hi=h15
K12,P

i,4

2


.

Our vector of moments used in estimation also includes moments for students in the non-

STEM track. For non-STEM students, the test score moments only relate to Portuguese

scores, because these students do not take math exams. Table 17 lists the histories that we

target for the students enrolled in the non-STEM track together with the percentage of the

students in the estimation sample that have each history.

The nine histories in table 17 represent 98.7 percent of the non-STEM students in our

estimation sample. For these non-STEM students, we include 12th grade Portuguese test

score moments, 1(hi=h)K
P
i,t and 1(hi=h)K

P
i,t

2
for those histories which permit a 12th grade

Portuguese test score to be observed (all histories except history 8, in which test scores are

only observed after the 5th year of high school enrollment and thus beyond the reach of our

data, which covers ninth grade plus up to four years of high school).
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Table 17: Targeted Histories, non-STEM

History Percentage
X10-11-12 75.8%
X10-10-11-12 10.7%
X10-11-12-12d 3.15%
X10-11-12-12-12d 2.46%
X10-11-12-12 2.08%
X10-11-11-12 1.77%
X10-10-11-12-12 or X10-10-11-12-12d 1.62%
X10-10-11-11-12 0.66%
X10-11-11-12-12 or X10-11-11-12-12d 0.54%

SUM: 98.7 %

Moments for these non-STEM students are formed as described above, by multiplying

the endogenous variables (history indicators, test scores, and squared test scores) by the

covariates in the value-added, retention, and dropout equations and summing over all indi-

viduals. These moments are given below, where the histories hNS1 , . . . hNS9 correspond to the

nine targeted non-STEM histories shown in Table 17.

mNS
i =

M1,NS

M2,NS

M3,NS


where

M1,NS =



1hi=hNS
1
· (1, K9,P

i,0 , I
′
i,1, X

′
i, H

R
i,1−3)

′

1hi=hNS
2
· (1, K9,P

i,0 , I
′
i,1, X

′
i, H

R
i,1−3)

′

1hi=hNS
3
· (1, K9,P

i,0 , I
′
i,3, X

′
i, H

R
i,3−3, L

′
i,4)
′

1hi=hNS
4
· (1, K9,P

i,0 , I
′
i,4, X

′
i, H

R
i,4−3, L

′
i,4)
′

1hi=hNS
5
· (1, K9,P

i,0 , I
′
i,3, X

′
i, H

R
i,3−3, L

′
i,4)
′

1hi=hNS
6
· (1, K9,P

i,0 , I
′
i,2, X

′
i, H

R
i,2−3, L

′
i,2)
′

1hi=hNS
7
· (1, K9,P

i,0 , I
′
i,4, X

′
i, H

R
i,4−3, L

′
i,4)
′

1hi=hNS
8
· (1, K9,P

i,0 , I
′
i,3, X

′
i, H

R
i,3−3)

′

1hi=hNS
9
· (1, K9,P

i,0 , I
′
i,4, X

′
i, H

R
i,4−3, L

′
i,4)
′


,
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M2,NS =



1hi=hNS
1
K12,P
i,3 · (1, K9,P

i,0 , I
′
i,1, X

′
i)
′

1hi=hNS
2
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,1, X

′
i)
′

1hi=hNS
3
K12,P
i,3 · (1, K9,P

i,0 , I
′
i,3, X

′
i)
′

1hi=hNS
4
K12,P
i,3 · (1, K9,P

i,0 , I
′
i,4, X

′
i)
′

1hi=hNS
4
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,4, X

′
i)
′

1hi=hNS
5
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,3, X

′
i)
′

1hi=hNS
6
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,2, X

′
i)
′

1hi=hNS
7
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,4, X

′
i)
′

1hi=hNS
9
K12,P
i,3 · (1, K9,P

i,0 , I
′
i,4, X

′
i)
′

1hi=hNS
9
K12,P
i,4 · (1, K9,P

i,0 , I
′
i,4, X

′
i)
′


,

M3,NS =



1hi=hNS
1
K12,P
i,3

2

1hi=hNS
2
K12,P
i,4

2

1hi=hNS
3
K12,P
i,3

2

1hi=hNS
4
K12,P
i,3

2

1hi=hNS
4
K12,P
i,4

2

1hi=hNS
5
K12,P
i,4

2

1hi=hNS
6
K12,P
i,4

2

1hi=hNS
7
K12,P
i,4

2

1hi=hNS
9
K12,P
i,3

2

1hi=hNS
9
K12,P
i,4

2


.

As before, the moments in M1,NS represent covariances between the covariates in the

retention and dropout equations and the history indicators, the moments in M2,NS are

covariances between the covariates in the value added equations and the endogenous twelfth

grade Portuguese test scores for both retained and non-retained students, and the moments

in M3,NS are squared test scores for students with each history in which test scores are

observable.
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Appendix B: Method used to smooth the objective function

This section describes how we smooth our objective function to facilitate its minimiza-

tion. In many Simulated Method of Moments problems, a simple frequency simulator is

used to simulate the model dependent variables. A set of S errors, εsi , are drawn for

each individual, i = 1, . . . , N and s = 1 . . . S, and, given a guess for the model pa-

rameters, the model is simulated S times and the frequency simulator is calculated as

f̄(zi, εi, y0; θ) = 1
S

∑S
s=1 f(zi, ε

s
i , y0; θ). Our model contains discrete dropout and retention

decisions, and hence the frequency simulator produces an objective function, J(θ), that is

discontinuous in θ. Due to difficulties associated with optimizing a discontinuous function

with a large parameter space, we do not use a frequency simulator.

Instead, following suggestions in Ackerberg (2009), we combine importance sampling with

a change of variable in integration to produce a simulator, and hence objective function, that

is continuous in θ. Suppose, first, that we can write f(zi, εi, y0; θ) = f̃(u(zi, εi, y0; θ)), so that

the simulator is a new function of an index vector, u. The objective function therefore

depends on the parameter vector, θ, only through u.

We then make use of the following identities to obtain a simulator that is smooth in θ:

E[f̃(ui)] =

∫
f̃(ui)p(ui | zi, yi,0, θ)dui

=

∫
f̃(ui)

p(ui | zi, yi,0, θ)
g(ui | zi, yi,0)

g(ui | zi, y0)dui

≈ 1

S

S∑
s=1

f̃(ui,s)
p(ui,s | zi, yi,0, θ)
g(ui,s | zi, yi,0)

, (14)

where the analog estimator in (14) depends on θ only through the density p(ui,s | zi, yi,0, θ).

The simulator works by initially drawing a large number deviates, ui,s, for each individual

from the density g(ui,s | zi, yi,0) and precomputing f̃(ui,s) at the simulated deviates. Then,

as θ varies during optimization, only the weight on these precomputed values, given by

p(ui,s|zi,yi,0,θ)
g(ui,s|zi,yi,0) , changes. The simulator is continuous for the purposes of optimization, because

all the discontinuities of the original function are transferred to f̃(ui,s), which is precomputed.
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These precomputed values are then reweighted during optimization according to weights

derived from a continuous density function, p(ui,s | zi, yi,0, θ).

The key to implementing this method is finding the function, f̃(ui,s), that satisfies

f̃(ui,s(zi, εi, y0; θ)) = f(zi, εi, y0; θ), where ui,s has a known and continuous density function.

The dependent variables whose moments we target have the form of 1(hi=h), 1(hi=h)K
g
i,t, or

1(hi=h)K
g
i,t

2. Noting that a particular history depends on a unique series of dropout and

retention decisions, and that the dropout and retention decisions are themselves indicator

functions of continuous indices, we can therefore let u be a vector of these continuous indices.

f̃(·) then applies a series of indicator functions to the elements of u to simulate moments of

the form 1(hi=h). In addition, since we are also interested in the endogenous test scores, we

append the formulas for these scores to the end u.

In what follows we show how u is constructed, and we present the function f(·) that

transforms u into the endogenous variables that comprise our moments. First it is useful to

break down the simulated test scores for each period into a part that depends on observed

exogenous variables, K
g

i,t, and a part that depends on unobserved shocks. We do this in

equations (15) through (24) for math. The formulas for simulated Portuguese test scores are

analogous.

K10,M
i,1 = γMK9,M

i,0 + βMIi,1 +
M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K

10,M
i,1

+εMi,1 , (15)

K11,M
i,2 = γM

2
K9,M
i,1 + βMIi,2 + γMβMIi,1 + (1 + γM)

M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K

11,M
i,2

+εMi,2 + γMεMi,1 , (16)

K12,M
i,3 = γM

3
K9,M
i,1 + βMIi,2 + γMβMIi,2 + γM

2
βMIi,1 + (1 + γM + γM

2
)

M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K

12,M
i,3

+

εMi,3 + γMεMi,2 + γM
2
εMi,1 , (17)
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K10,MR
i,2 = γMRK

10,M

i,1 + βMRIi,2 +
M∑
m=1

αm,MRµmi︸ ︷︷ ︸
K

10,MR
i,2

+εMR
i,2 + γMRεMi,1 , (18)

K11,M
i,3 = γMK

10,MR

i,2 + βMIi,3 +
M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K

11,M
i,3

+

εMi,3 + γMεMR
i,2 + γMγMRεMi,1 , (19)

K12,M
i,4 = γMK

11,M

i,3 + βMIi,4 +
M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K

12,M
i,4

+

εMi,4 + γMεMi,3 + γM
2
εMR
i,2 + γM

2
γMRεMi,1 , (20)

K11,MR
i,4 = γMRK

11,M

i,3 + βMRIi,4 +
M∑
m=1

αm,MRµmi︸ ︷︷ ︸
K

11,MR
i,4

+

εMR
i,4 + γMRεMi,3 + γMγMRεMR

i,2 + γM
2
γMRεMi,1 , (21)

K11,MR
i,3 = γMK

11,M

i,2 + βMRIi,3 +
M∑
m=1

αm,MRµmi︸ ︷︷ ︸
K

11,MR
i,3

+εMR
i,3 + γMRεMi,2 + γMRγMεMi,1 , (22)

K̃12,M
i,4 = γMK

11,MR

i,3 + βMIi,4 +
M∑
m=1

αm,Mµmi︸ ︷︷ ︸
K̃

12,M

i,4

+

εMi,4 + γMεMR
i,3 + γMγMRεMi,2 + γMRγM

2
εMi,1 , (23)

K̃12,MR
i,4 = γMRK

12,M

i,3 + βMRIi,4 +
M∑
m=1

αm,MRµmi︸ ︷︷ ︸
K̃

12,MR

i,4

+

εMR
i,4 + γMRεMi,3 + γMγMRεMi,2 + γMRγM

2
εMi,1 , (24)

The deterministic parts of simulated knowledge, K
g

i,t, will form part of the mean of ui,

while the shocks will be part of the error. We are now ready to write the vector ui as
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ui = meani + errori, where meani depends exclusively on observed variables and errori

depends exclusively on unobserved shocks. The mean vector is as follows:

meani =



δ110 + δ111 K
10,M

i,1 + δ112 K
10,P

i,1 + δ113 Li,2 + δ114 Ii,1 + δ115 Xi +
∑M

m=1 α
11,m
D µmi

δ120 + δ121 K
11,M

i,2 + δ122 K
11,P

i,2 + δ123 Li,3 + δ124 Ii,2 + δ125 Xi +
∑M

m=1 α
12,m
D µmi

λ100 + λ101 K
10,M

i,1 + λ102 K
10,P

i,1 + λ103 H
R
i,1−3 + λ104 Ii,1 + λ105 Xi +

∑M
m=1 α

m,10
RETµ

m
i

λ110 + λ111 K
11,M

i,2 + λ112 K
11,P

i,2 + λ113 H
R
i,2−3 + λ114 Ii,2 + λ115 Xi +

∑M
m=1 α

m,11
RETµ

m
i

λ12,M0 + λ12,M1 K
12,M

i,3 + λ12,M2 HR
i,3−3 + λ12,M3 Ii,3 + λ12,M4 Xi +

∑M
m=1 α

m,12M
RET µmi

λ12,P0 + λ12,P1 K
12,P

i,3 + λ12,P2 HR
i,3−3 + λ12,P3 Ii,3 + λ12,P4 Xi +

∑M
m=1 α

m,12P
RET µmi

δ100 + δ101 K
10,M

i,1 + δ102 K
10,P

i,1 + δ103 Li,2 + δ104 Ii,1 + δ105 Xi +
∑M

m=1 α
10,m
D µmi

δ120 + δ121 K
12,M

i,3 + δ122 K
12,P

i,3 + δ123 Li,4 + δ124 Ii,3 + δ125 Xi +
∑M

m=1 α
12,m
D µmi

λ12,M0 + λ12,M1 K̃
12,MR

i,4 + λ12,M2 HR
i,4−3 + λ12,M3 Ii,4 + λ12,M4 Xi +

∑M
m=1 α

m,12M
RET µmi

δ100 + δ101 K
10,MR

i,2 + δ102 K
10,PR

i,2 + δ103 Li,3 + δ104 Ii,2 + δ105 Xi +
∑M

m=1 α
10,m
D µmi

λ100 + λ101 K
10,MR

i,2 + λ102 K
10,PR

i,2 + λ103 Hi,2−3 + λ104 Ii,2 + λ105 Xi +
∑M

m=1 α
10,m
RETµ

m
i

δ110 + δ111 K
11,M

i,2 + δ112 K
11,P

i,2 + δ113 Li,3 + δ114 Ii,2 + δ115 Xi +
∑M

m=1 α
11,m
D µmi

δ110 + δ111 K
10,MR

i,2 + δ112 K
10,PR

i,2 + δ113 Li,3 + δ114 Ii,2 + δ115 Xi +
∑M

m=1 α
11,m
D µmi

δ120 + δ121 K
11,M

i,3 + δ122 K
11,P

i,3 + δ123 Li,4 + δ124 Ii,3 + δ125 Xi +
∑M

m=1 α
12,m
D µmi

λ110 + λ111 K
11,M

i,3 + λ112 K
11,P

i,3 + λ113 Hi,3−3 + λ114 Ii,3 + λ115 Xi +
∑M

m=1 α
11,m
RETµ

m
i

λ12,M0 + λ12,M1 K
12,M

i,4 + λ12,M2 HR
i,4−3 + λ12,M3 Ii,4 + λ12,M4 Xi +

∑M
m=1 α

m,12M
RET µmi

λ12,P0 + λ12,P1 K
12,P

i,4 + λ12,P2 HR
i,4−3 + λ12,P3 Ii,4 + λ12,P4 Xi +

∑M
m=1 α

m,12P
RET µmi

δ110 + δ111 K
11,M

i,3 + δ112 K
11,P

i,3 + δ113 Li,4 + δ114 Ii,3 + δ115 Xi +
∑M

m=1 α
11,m
D µmi

δ110 + δ111 K
11,MR

i,3 + δ112 K
11,PR

i,3 + δ113 Li,4 + δ114 Ii,3 + δ115 Xi +
∑M

m=1 α
11,m
D µmi

λ110 + λ111 K
11,MR

i,3 + λ112 K
11,PR

i,3 + λ113 Li,4 + λ114 Ii,3 + λ115 Xi +
∑M

m=1 α
11,m
D µmi

δ120 + δ121 K
11,MR

i,3 + δ122 K
12,PR

i,3 + δ123 Li,4 + δ124 Ii,3 + δ125 Xi +
∑M

m=1 α
12,m
D µmi

λ12,M0 + λ12,M1 K̃
12,M

i,4 + λ12,M2 K̃
12,P

i,3 + λ123 Hi,4−3 + λ124 Ii,3 + λ125 Xi +
∑M

m=1 α
m,12M
D µmi

λ12,P0 + λ12,P1 K̃
12,P

i,4 + λ12,P2 K̃
12,P

i,3 + λ123 Hi,4−3 + λ124 Ii,3 + λ125 Xi +
∑M

m=1 α
m,12P
RET µmi

λ12,P0 + λ12,P1 K̃
12,PR

i,4 + λ12,P2 K̃
12,PR

i,4 + λ12,P3 Hi,4−3 + λ12,P4 Ii,3 + λ12,P5 Xi +
∑M

m=1 α
m,12P
RET µmi

K
12,M

i,3

K
12,M

i,4

K
12,M

i,4

K
12,MR

i,4

K
12,P

i,3

K
12,P

i,4

K
12,P

i,4

K
12,PR

i,4


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The error vector is as follows:

errori =



ηi,2 + δ111 ε
M
i,1 + δ112 ε

P
i,1

ηi,3 + δ121 (εMi,2 + γMεMi,1) + δ122 (εPi,2 + γP εPi,1)
νi,1 + λ101 ε

M
i,1 + λ102 ε

P
i,1

νi,2 + λ111 (εMi,2 + γMεMi,1) + λ112 (εPi,2 + γP εPi,1)

νMi,3 + λ12,M1 (εMi,3 + γMεMi,2 + γM
2
εMi,1)

νPi,3 + λ12,P1 (εPi,3 + γP εPi,2 + γP
2
εPi,1)

ηi,2 + δ101 ε
M
i,1 + δ102 ε

P
i,1

ηi,4 + δ121 (εMi,3 + γMεMi,2 + γM
2
εMi,1) + δ122 (εPi,3 + γP εPi,2 + γP

2
εPi,1)

νMi,4 + λ12,M1 (εMR
i,4 + γMRεMi,3 + γMRγMεMi,2 + γM

2
γMRεMi,1)

ηMi,3 + δ10,M1 (εMR
i,2 + γMRεMi,1) + δ10,P1 (εPRi,2 + γPRεPi,1)

νMi,2 + λ101 (εMR
i,2 + γMRεMi,1) + λ101 (εPRi,2 + γPRεPi,1)

ηMi,3 + δ111 (εMi,2 + γMεMi,1) + δ111 (εPi,2 + γP εPi,1)
ηMi,3 + δ111 (εMR

i,2 + γMRεMi,1) + δ111 (εPRi,2 + γPRεPi,1)
ηMi,4 + δ121 (εMi,3 + γMεMR

i,2 + γMγMRεMi,1) + δ122 (εPi,3 + γP εPRi,2 + γPγPRεPi,1)
νPi,3 + λ111 (εMi,3 + γMεMR

i,2 + γMRγMεMi,1) + λ111 (εMi,3 + γMεMR
i,2 + γMRγMεMi,1)

νMi,4 + λ12,M1 (εMi,4 + γMεMi,3 + γM
2
εMR
i,2 + γMRγM

2
εMi,1)

νPi,4 + λ12,P1 (εPi,4 + γP εPi,3 + γP
2
εPRi,2 + γPRγP

2
εPi,1)

ηi,4 + δ111 (εMi,3 + γMεMR
i,2 + γMRγMεMi,1) + δ112 (εPi,3 + γP εPRi,2 + γPRγP εPi,1)

ηi,4 + δ111 (εMR
i,3 + γMRεMi,2 + γMRγMεMi,1) + δ112 (εPRi,3 + γPRεPi,2 + γPRγP εPi,1)

νPi,4 + λ111 (εMR
i,3 + γMRεMi,2 + γMRγMεMi,1) + λ112 (εPRi,3 + γPRεPi,2 + γPRγP εPi,1)

ηi,4 + δ121 (εMR
i,3 + γMRεMi,2 + γMRγMεMi,1) + δ122 (εPRi,3 + γPRεPi,2 + γPRγP εPi,1)

νMi,4 + λ12,M1 (εMi,4 + γMεMR
i,3 + γMγMRεMi,2 + γM

2
γMRεMi,1)

νPi,4 + λ12,P1 (εPi,4 + γP εPRi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1)

νPi,4 + λ12,P1 (εPRi,4 + γPRεPi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1)

εMi,3 + γMεMi,2 + γM
2
εMi,1

εMi,4 + γMεMi,3 + γM
2
εMR
i,2 + γM

2
γMRεMi,1

εMi,4 + γMεMR
i,3 + γMγMRεMi,2 + γM

2
γMRεMi,1

εMR
i,4 + γMRεMi,3 + γMγMRεMi,2 + γM

2
γMRεMi,1

εPi,3 + γP εPi,2 + γP
2
εPi,1

εPi,4 + γP εPi,3 + γP
2
εPRi,2 + γP

2
γPRεPi,1

εPi,4 + γP εPRi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1

εPRi,4 + γPRεPi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1


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Sampling ui, therefore involves repeatedly drawing from a multivariate normal distribu-

tion with mean given by meani and covariance matrix given by the outer product of errori.

A .csv file containing the covariance matrix is available from the authors upon request.

We have written the vector of means, meani, as depending on the type of the individual,

µmi . While these types are unobserved, incorporating them in the importance sampler is

straightforward. The effect of the types is to shift the intercepts in each of the dropout,

retention, and value added equations. The types therefore affect meani, but not errori and

therefore not the variance of the sampling distribution. When incorporating the unobserved

types, we sample ui,s from the multivariate normal distribution with mean equal to p1 ×

meani(µi = 1) + p2 ×meani(µi = 2) + (1− p1 − p2)×meani(µi = 3) and variance given by

the outerproduct of errori, where (p1, p2, 1− p1− p2) are the probabilities of types one, two,

and three, respectively.

For each simulation s, the dependent variables F (ui,s) are precomputed. The function

F (·) that transforms the deviates into simulated dependent variables is as follows:

F (ui,s) =

h1(ui,s)
h2(ui,s)
h3(ui,s)

 (25)

where
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h1(u) =
(
h1(u), h2(u), ..., h14(u), h15(u)

)′
=



1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) < 0, u(6) < 0)
1(u(3) > 0, u(7) > 0)

1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) > 0, u(6) < 0, u(8) < 0, u(9) > 0)
1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) > 0, u(6) < 0, u(8) < 0, u(9) < 0)

1(u(1) < 0, u(2) > 0, u(3) < 0, u(4) < 0)
1(u(3) > 0, u(7) < 0, u(10) > 0, u(11) > 0)

1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) > 0, u(6) < 0, u(8) > 0)
1(u(1) < 0, u(3) < 0, u(4) > 0, u(12) > 0)

1(u(3) > 0, u(7) < 0, u(11) < 0, u(13) < 0, u(14) < 0, u(15) < 0, u(16) < 0, u(17) < 0)
1(u(3) > 0, u(7) < 0, u(11) < 0, u(13) < 0, u(15) > 0, u(18) > 0)
1(u(1) < 0, u(3) < 0, u(4) > 0, u(12) < 0, u(19) > 0, u(20) > 0)

1(u(1) > 0, u(3) < 0)
1(u(1) < 0, u(3) < 0, u(4) > 0, u(12) < 0, u(20) < 0, u(21) < 0, u(22) < 0, u(23) < 0)

1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) > 0, u(6) > 0, u(8) < 0, u(9) < 0, u(24) < 0)
1(u(1) < 0, u(2) < 0, u(3) < 0, u(4) < 0, u(5) > 0, u(6) > 0, u(8) < 0, u(9) < 0, u(24) < 0)


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h2(u) =



h1(u) · u(25)
h1(u) · u(29)
h3(u) · u(25)
h3(u) · u(29)
h3(u) · u(28)
h4(u) · u(25)
h4(u) · u(29)
h4(u) · u(28)
h7(u) · u(25)
h7(u) · u(29)
h9(u) · u(30)
h13(u) · u(27)
h13(u) · u(31)
h14(u) · u(25)
h14(u) · u(29)
h14(u) · u(28)
h14(u) · u(32)
h14(u) · u(25)
h14(u) · u(29)
h14(u) · u(28)
h14(u) · u(32)


and h3(u) = h2(ui)

2
. h1(ui,s) represent indicators for individual i’s history in simulation

s, h2(ui,s) indicate the twelfth grade test scores for student i when the history permits the

test score to be observed, and h3(ui,s) are the squared test scores, again when the student’s

history in that simulation allows test scores to be observed.

For individuals who are not enrolled in STEM, we repeat the sampling process, albeit with

a smaller number of equations. Define the sampled deviates as uNSi = meanNSi + errorNSi ,

where meanNSi and errorNSi are defined as follows:

66



meanNSi =



λ100 + λ102 K
10,P

i,1 + λ103 H
R
i,1−3 + λ104 Ii,1 + λ105 Xi +

∑M
m=1 α

m,10
RETµ

m
i + λ10NS

λ110 + λ112 K
11,P

i,2 + λ113 H
R
i,2−3 + λ114 Ii,2 + λ115 Xi +

∑M
m=1 α

m,11
RETµ

m
i + λ11NS

λ12,P0 + λ12,P1 K
12,P

i,3 + λ12,P2 HR
i,3−3 + λ12,P3 Ii,2 + λ12,P4 Xi +

∑M
m=1 α

m,12
RETµ

m
i

λ100 + λ102 K
10,PR

i,2 + λ103 H
R
i,2−3 + λ104 Ii,2 + λ105 Xi +

∑M
m=1 α

m,10
RETµ

m
i + λ10NS

λ110 + λ112 K
11,P

i,3 + λ113 H
R
i,2−3 + λ114 Ii,2 + λ115 Xi +

∑M
m=1 α

m,11
RETµ

m
i + λ11NS

λ12,P0 + λ12,P1 K
12,P

i,4 + λ12,P2 HR
i,4−3 + λ12,P3 Ii,4 + λ12,P4 Xi +

∑M
m=1 α

m,12
RETµ

m
i

δ120 + δ122 K
12,P

i,3 + δ123 L
R
i,4 + δ124 Ii,3 + δ12,P5 Xi +

∑M
m=1 α

m,12
D µmi

λ12,P0 + λ12,P1 K̃
12,PR

i,4 + λ12,P2 HR
i,4−3 + λ12,P3 Ii,4 + λ12,P4 Xi +

∑M
m=1 α

m,12
RETµ

m
i

λ110 + λ112 K
11,PR

i,3 + λ113 H
R
i,3−3 + λ114 Ii,3 + λ115 Xi +

∑M
m=1 α

m,11
RETµ

m
i + λ11NS

λ12,P0 + λ12P2 K̃
12,P

i,4 + λ12,P3 HR
i,4−3 + λ12,P4 Ii,4 + λ12,P5 Xi +

∑M
m=1 α

m,12P
RET µmi

λ110 + λ112 K
11,PR

i,4 + λ113 H
R
i,4−3 + λ114 Ii,4 + λ115 Xi +

∑M
m=1 α

m,11
RETµ

m
i + λ11NS

K
12,P

i,3

K
12,P

i,4

K
12,P

i,4

K
12,PR

i,4



errorNSi =



νi,1 + λ102 ε
P
i,1

νi,2 + λ102 (εPi,2 + γP εPi,1)

νi,3 + λ12,P2 (εPi,3 + γP εPi,2 + γP
2
εPi,1)

νi,2 + λ102 (εPRi,2 + γPRεPi,1)

νi,3 + λ12,P2 (εPi,3 + γP εPRi,2 + γPγPRεPi,1)

νi,4 + λ12,P1 (εPi,4 + γP εPi,3 + γP
2
εPRi,2 + γP

2
γPRεPi,1)

ηi,4 + δ122 (εPi,3 + γP εPi,2 + γP
2
εPi,1)

νi,4 + λ12,P1 (εPRi,4 + γPRεPi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1)

νi,3 + λ112 (εPRi,3 + γPRεPi,2 + γPγPRεPi,1)

νi,4 + λ12,P1 (εPi,4 + γP εPRi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1)

νi,4 + λ12,P1 (εPRi,4 + γPRεPi,3 + γPγPRεPRi,2 + γPγPR
2
εPi,1)

εPi,3 + γP εPi,2 + γP
2
εPi,1

εPi,4 + γP εPi,3 + γP
2
εPRi,2 + γP

2
γPRεPi,1

εPi,4 + γP εPRi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1

εPRi,4 + γPRεPi,3 + γPγPRεPi,2 + γP
2
γPRεPi,1


The function FNS(·) that transforms the deviates for non-STEM students into simulated

dependent variables is as follows:
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FNS(ui,s) =

h1,NS(ui,s)
h2,NS(ui,s)
h3,NS(ui,s)

 (26)

where

h1,NS(u) =



hNS1 (u)
hNS2 (u)
hNS3 (u)
hNS4 (u)
hNS5 (u)
hNS6 (u)
hNS7 (u)
hNS8 (u)
hNS9 (u)


=



1(u(1) < 0, u(2) < 0, u(3) < 0)
1(u(1) > 0, u(4) < 0, u(5) < 0, u(6) < 0)
1(u(1) < 0, u(2) < 0, u(3) > 0, u(7) > 0)

1(u(1) < 0, u(2) < 0, u(3) > 0, u(7) < 0, u(8) > 0)
1(u(1) < 0, u(2) < 0, u(3) > 0, u(7) < 0, u(8) < 0)

1(u(1) < 0, u(2) > 0, u(9) < 0, u(10) < 0)
1(u(1) > 0, u(4) > 0, u(5) < 0, u(6) < 0)
1(u(1) > 0, u(4) < 0, u(5) > 0, u(11) < 0)
1(u(1) < 0, u(2) > 0, u(9) < 0, u(10) > 0)



h2,NS(u) =



hNS1 (u) · uNS,(12)
hNS2 (u) · uNS,(13)
hNS3 (u) · uNS,(12)
hNS4 (u) · uNS,(12)
hNS4 (u) · uNS,(15)
hNS5 (u) · uNS,(12)
hNS5 (u) · uNS,(15)
hNS6 (u) · uNS,(14)
hNS7 (u) · uNS,(13)
hNS9 (u) · uNS,(14)


and h3,NS(u) = h2,NS(u)

2
. As before, h1,NS(u) represent indicators for the history of (non-

STEM) student i in simulation s, while h2,NS(u) represent the twelfth grade test scores for

this student when they can be observed, and h3,NS(u) are the square of these test scores,

whenever it is possible to observe them.

We now provide a few examples to facilitate comprehension of this approach. Consider a

student in the STEM track. We set an initial value for the parameter, θinit, and let g(ui,s |

zi, yi,0) := p(ui,s | zi, yi,0, θinit), where p(ui,s | zi, yi,0, θinit) is a multivariate normal distribu-

tion with mean equal tomeani(θ
init) and covariance matrix given by E[errori(θ

init)errori(θ
init)′].
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For each individual i, S total random deviates are drawn from this distribution. We evaluate

f(ui,s) at every deviate. Suppose the first six components of ui,s are positive. h1(ui,s) shows

that individual i in simulation s ends up with the first history, 10-11-12X10-11-12. This

individual will then have an observed math and Portuguese test score in the twelfth grade

in the third year of high school. These scores are the 25th and 29th, respectively, elements

of ui,s and these test scores form the first two elements of h2(ui,s). Suppose, instead, that

in simulation t the third and and seventh element of ui,t are positive. Then individual i in

simulation t has history 2, 10 − 10dX10 − 10d. This person will not have an observed test

score.

The first twenty-four elements of ui,s uniquely characterize the fifteen STEM histo-

ries. In addition, there are 4 different realizations of twelfth grade test scores for each

of math/Portuguese, depending on whether the student was retained in 10th, 11th, or 12th

grade (if a student is retained in the 12th grade we observe two test scores: before she is

retained, and after the year of retention). Therefore, ui,s for a student enrolled in the STEM

track is a vector of length 24 + 2× 4 = 32.

Similarly, the first eleven elements of ui,s uniquely characterize the nine non-STEM his-

tories. Because we observe only Portuguese scores for these histories, u for these students is

a vector of length 11 + 1× 4 = 15.

After pre-computing f(ui,s) at every deviate, we optimize over the objective function by

reweighting f(ui,s) by
p(ui,s|zi,yi,0,θ)
g(ui,s|zi,yi,0) as in equation (14) during optimization. We optimize

J(θ) using the Broyden–Fletcher–Goldfarb–Shanno gradient-based algorithm. We supply a

gradient that is approximated using finite differences with a step size of 10−8. In order for

the algorithm to work well, a good initial guess is crucial. For parameter values far from the

truth, small numbers of individuals appear in the moments that we target, which causes the

objective function to be relatively unresponsive to perturbations of the parameters. To get

a good initial guess, we optimized repeatedly from different starting values using a simplex

algorithm applied to a 10% sample of the data (to speed up computation)(Rowan (1990)).

We then took each solution to the simplex algorithm and supplied it as an initial guess to
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the BFGS algorithm. With a good initial guess, the optimizer would converge quickly to the

solution with approximately 1000 function evaluations. Many optimizations from different

starting values were done to search for the global optimum. An initial optimization with the

identity weight matrix is used to obtain solutions to compute the optimal weight matrix.

The function is then minimized a second time with the optimal weight matrix.
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Appendix C: Additional Tables

Table C-1: Goodness of fit, STEM histories

History Data Simulation
10-11-12X10-11-12 50.3% 54.3%
10-10dX10-10d 8.77% 11.2%
10-11-12-12-12X10-11-12 or 10-11-12-12-12dX10-11-12 5.20% 1.00%
10-11-12-12X10-11-12 4.78% 2.93%
10-11-12dX10-11-12d 2.09% 1.21%
10-10-10dX10-10-10d 2.52% 5.82%
10-11-12-12dX10-11-12 3.07% 1.93%
10-11-11dX10-11-11d 2.12% 1.84%
10-10-11-12X10-10-11-12 or 10-10-11-12dX10-10-11-12 3.36% 5.53%
10-10-11-11dX10-10-11-11d 2.11% 0.60%
10-11-11-11dX10-11-11-11d 1.66% 0.20%
10-11dX10-11d 1.53% 1.61%
10-11-11-12X10-11-11-12 1.20% 1.68%
10-11-12-12X10-11-12-12 0.11% 0.16%
10-11-12-12-12dX10-11-12-12-12d or 10-11-12-12-12X10-11-12-12-12 0.25% 0.02%

The table shows the in-sample fit of the model for a subset of targeted moments: the proportion of STEM
students with each history.
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Table C-2: Goodness of fit, non-STEM histories

History Data Simulation
X10-11-12 75.8% 82.6%
X10-10-11-12 10.7% 8.33%
X10-11-12-12d 3.15% 1.84%
X10-11-12-12-12d 2.46% 0.20%
X10-11-12-12 2.08% 2.23%
X10-11-11-12 1.77% 2.48%
X10-10-11-12-12 or X10-10-11-12-12d 1.62% 0.50%
X10-10-11-11-12 0.66% 1.04%
X10-11-11-12-12 or X10-11-11-12-12d 0.54% 0.14%

The table shows the in-sample fit of the model for a subset of targeted moments: the proportion of
non-STEM students with each history.
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Table C-3: Retention impacts by socioeconomic status

Math Portuguese
Low SES Raw S.D. Raw S.D. Prop. with score
Retained in 10th/11th Grades 3.87 0.16 8.18 0.48 0.10

(1.52) (0.06) (0.98) (0.06) (0.01)
Retained in 12th Grade 5.83 0.25 8.37 0.49 0.08

(2.85) (0.12) (1.35) (0.08) (0.01)
Graduate in 4 Years 4.96 0.21 8.56 0.5 0.12

(1.32) (0.06) (0.79) (0.05) (0.01)
High SES
Retained in 10th/11th Grades 3.95 0.17 8.21 0.48 0.11

(1.26) (0.05) (0.87) (0.05) (0.01)
Retained in 12th Grade 4.79 0.20 8.45 0.50 0.08

(2.80) (0.12) (1.54) (0.09) (0.02)
Graduate in 4 Years 4.58 0.19 8.52 0.50 0.13

(1.04) (0.04) (0.74) (0.04) (0.01)

The table presents estimates of the effect of grade retention on test scores for three treated subgroups
disaggregated by socioeconomic status (SES). Low SES corresponds to an individual’s parent qualifying for
a public income subsidy. Treatment effects are computed by averaging the difference in test scores across
the two counterfactuals, for students whose scores are visible within four years of high school entry. This
does not include students who drop out before the 12th grade in either the status quo or counterfactual
policy simulation. The standard deviations on the 12th grade math and Portuguese exams are 23.6 and
17.0 points, respectively.
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Table C-4: Retention impacts by age relative to peers

Math Portuguese
At Grade Level Raw S.D. Raw S.D. Prop. with score
Retained in 10th/11th Grades 3.68 0.16 8.17 0.48 0.11

(1.59) (0.07) (0.83) (0.05) (0.01)
Retained in 12th Grade 3.97 0.17 8.54 0.50 0.06

(2.14) (0.09) (1.3) (0.08) (0.01)
Graduate in 4 Years 4.25 0.18 8.46 0.50 0.13

(1.02) (0.04) (0.67) (0.04) (0.01)

One Year Older
Retained in 10th/11th Grades 5.83 0.25 8.53 0.50 0.10

(1.25) (0.05) (0.9) (0.05) (0.01)
Retained in 12th Grade 6.86 0.29 8.36 0.49 0.15

(3.07) (0.13) (1.56) (0.09) (0.02)
Graduate in 4 Years 7.60 0.32 8.97 0.53 0.13

(1.11) (0.05) (0.75) (0.04) (0.01)

Two or More Years Older
Retained in 10th/11th Grades 7.34 0.31 7.70 0.45 0.07

(2.23) (0.09) (1.03) (0.06) (0.01)
Retained in 12th Grade 8.87 0.38 7.48 0.44 0.17

(1.74) (0.07) (1.40) (0.08) (0.01)
Graduate in 4 Years 9.88 0.42 8.49 0.50 0.07

(1.58) (0.07) (0.93) (0.05) (0.00)

The table presents estimates of the effect of grade retention on test scores for three treated subgroups
disaggregated by the age at which the student enters high school. Students who enter high school one or
more year above grade level have typically been retained prior to entering high school. Treatment effects
are computed by averaging the difference in test scores across the two counterfactuals, for students whose
scores are visible within four years of high school entry. This does not include students who drop out
before the 12th grade in either the status quo or counterfactual policy simulation. The standard deviations
on the 12th grade math and Portuguese exams are 23.6 and 17.0 points, respectively.
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Table C-5: Estimated parameters, log wage equation

Dependent Variable:
Log wages

Coefficient S.E.

Education 0.089 (0.000)
Experience 0.031 (0.000)
Experience2 -0.0003 (0.000)
Constant 0.307 (0.002)

Observations 1,843,440
RMSE 0.435
R2 0.313
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Appendix D: Identification of unobserved heterogeneity parameters

The figures in this section demonstrate identification of the coefficients on the latent types,

as well as the probability of each type. Figures D-1 through D-7 plot the SMM objective as

a function of each coefficient for the latent types, holding every other parameter fixed. The

center of each diagram is the estimated value that minimizes the objective function. The

curvature of the objective function around the minimum shows that marginal perturbations

in the type-specific parameters induce changes in the objective function. Note that the type

probabilities are constrained to lie in the unit simplex, so a multinomial logit transformation

was applied inside the function while optimizing, and the values along the X-axis in Figure

D-7 corresponds to the values of the parameters before applying the transformation (they

are not the estimated probabilities).

76



Figure D-1: Type Parameters, Math

Figure D-2: Type Parameters, Portuguese

Figure D-3: Type Parameters, Dropout in 10th\11th Grades

Figure D-4: Type Parameters, Dropout in 12th Grade
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Figure D-5: Type Parameters, Retention in 10th\11th Grade

Figure D-6: Type Parameters, Retention in 12th Grade Math and Portuguese

Figure D-7: Type Probabilities

78


