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1. Introduction

Matching estimators evaluate the effects of a treatment intervention by
comparing outcomes for treated persons to those of similar persons in a com-
parison group. Treatment may represent, for example, participation in a
training program, where the outcome is earnings or employment after the
program intervention. Comparison group persons are determined to be suit-
able matches for treated persons if they have similar observed characteris-
tics, as measured by some distance metric. Here we discuss different types
of matching estimators that are proposed and considered in greater detail
in Heckman, Ichimura, and Todd (1997, 1998) and in Heckman, Ichimura,
Smith and Todd (1998). We give special consideration to implementation
issues. At the end, some sample code is provided.

Notation:

Let Y7 denote the outcome for persons who receive the treatment.

Let Y, denote the outcome without treatment.

Let D =1 if persons receive treatment, D = 0 if not.
e Let X denote other characteristics used as conditioning variables.

o Let P(X) = Pr(D = 1|X)

*This guide prepared by Petra Todd for IADB meeting in Santiago, Chile. Please direct
any comments to petra@athena.sas.upenn.edu.



There are multiple types of matching estimators that differ in terms of the
assumptions needed to justify their application and in terms of the estimation
methods used in constructing the matches. They can be broadly classified
into two main types:

o cross-sectional (CS) matching estimators compares the outcomes for
treatments and comparison groups persons measured at some time pe-
riod after the program.

e difference-in-difference (DID) matching estimators compares the change
in outcomes for treatments to the change in outcomes for comparison
group members, where the change is measured relative to some prepro-
gram benchmark time period.

The advantage of using a difference-in-difference estimator instead of a
cross-sectional estimator is that it allows for time-invariant unobservable dif-
ferences between treatment and comparison group individuals. A major ad-
vantage of having baseline or preprogram data is that it allows a difference-
in-difference strategy to be used.

The specific matching estimators that are discussed here are:

(a) nearest neighbor cross-sectional matching estimator
(b) nearest neighbor difference-in-difference (DID) matching estimator
(c) kernel and local linear versions of the above estimators.

In Heckman, Ichimura and Todd (1997, 1998) another kind of match-
ing estimator, called regression-adjusted matching is developed. We do not
consider it here, because it is more difficult to implement than the other
methods.

I1. Identifying assumptions of different estimators
A key parameter of interest in evaluations is the mean impact of treatment
on the treated. It can be defined conditional on some characteristics X

Ap_i(X) = E(Y; — Yo|X,D = 1)



or an averaged parameter may be defined over some support of X, S, :

A Jo. E = Yo|X, D =1)fo(X|D = 1)dX
A Jo. fo(X|D =1)dX )

where f,(X|D = 1) is the density of X.
All estimators described below aim to estimate the overall mean impact

of treatment on the treated, Ap_q.!

A. Cross-sectional Matching Estimator
This estimator assumes:

(CS.1)  E(Yo|P(X),D =1) = E(Ys|P(X), D = 0)
(CS.2) 0<Pr(D=1X)<1

Under these conditions, Ap—; can be estimated by

ny
AGE =nt' Y Yiu(Xo) - E(Yu|P(X.), D; = 0),
(D1}
where n; are the number of treated individuals with X values that satisty
CS.2. E(Yy|P(X;),D; = 0) can be estimated by a nonparametrically by
nearest neighbor, kernel, or local linear regression. These estimators are
discussed below.

B. Difference-in-difference (DID) Matching Estimator

This estimator requires repeated cross-section data (or longitudinal data)
on program participants and nonparticipants. Let ¢ and ¢’ be two time pe-
riods, one before the program start date and one after. Yp, is the outcome
observed at time t. Conditions needed to justify the application of the esti-
mator are:

(DID.1) E(Yy, — You|P(X),D = 1) = E(Yo, — You|P(X), D = 0)
(DID.2) 0<Pr(D=1X)<1

1Slightly modified version of the matching estimators considered here could be used to
get at other parameters, such as the impact of treatment on a person randomly assigned
to the program.



Under these conditions, Ap—_; can be estimated by

nit

AP = nyt Y {Yu(Xa) — E(You| P(X3), Di = 0)} —

i=1
{Di=1}

Ty
n;‘/’l Z {Yor;(X;) — E(Yor;|P(X;),D; =0)}
=1

]_
{D;=1}

where ny; and nqy are the number of observations in the two time periods.

III. Implementation

We next discuss how to implement the above estimators. A sample pro-
gram (written in pseudo-code) is provided for a simple average nearest neigh-
bor matching. Additional programs (written in Splus and Fortran) are pro-
vided in the appendix for the local linear estimator.

A. Step One - Estimate a model for program participation.

The conditional probability of participating in the program (also called
the propensity score) plays an important role in implementing both matching
and traditional econometric selection estimators. If the probability of par-
ticipating in the program is estimated by a paramateric procedure (such as
logit or probit), this provides a way of reducing the dimension of the condi-
tioning problem in matching. That is, the problem of matching is reduced to
a one-dimensional, nonparametric estimation problem — that of estimating
E(Yy|D =0, P(X)) — instead of a k dimensional problem — that of estimating
E(Yy|D =0,X).

Estimating the propensity scores requires choosing a set X of conditioning
variables. It is important to restrict the choice of X variables to ones that
are not influenced by the program. Otherwise, the matching estimator will
not correctly measure the effect of the program, because it will not capture
changes in the distribution of the X variables induced by the program. For
this reason, X variables are usually chosen to be characteristics of the persons
prior to entering the program.? For example, X might include employment

2However, even these variables could be conceivably influenced by the program since
individuals anticipate their entry into the program. For example, some individuals might
quit their jobs in an attempt to qualify for entry into the program.
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history in the year prior to entering a training program, which was found to be
an important predictor of program participation in the Heckman, Ichimura,
and Todd (1997) and Heckman, Ichimura, Smith and Todd (1998) papers.

In Heckman, Ichimura and Todd (1997, hereafter HIT), conditional prob-
abilities of program participation are estimated by logistic regression. The set
of matching variables is chosen to as the subset of variables that maximizes
the equally weighted percentage of observations correctly classified under the
logistic model. 3In HIT, we found that the matching estimators performed
best when a rich set of conditioning variables was used. The quality of the
estimates deteriorated substantially (in terms of having greater bias) when a
crude set of variables consisting only of general demographic characteristics
was used.

What if the data is nonrandomly sampled?

In evaluation settings, the data is often gathered using a choice-based
sampling design, where observations on the treatment group are either over
or undersampled relative to their frequency in a random population. Usually
data on treated persons is combined with data on comparison group persons
and treatments are overrepresented relative to their frequency in a random
population.

With choice-based sampled data, weighting of observations is required to
obtain consistent estimates of the propensity scores. (See Amemiya, 1985)
Often, though, the analyst does not know which weights to use. In this case,
it is still possible to use matching estimators, but it requires matching on the
log-odds ratio log(P(X;)/1 — P(X;)) instead of on the estimated propensity
scores directly.?

B. Step Two - Construct the matched outcomes

Constructing matched outcomes requires estimating E(Yy;|P(X;), D; =
0) for the cross-sectional matching estimator and E(Yyu|P(X;), D; = 0) and

3However, there is no real justification for choosing the set in this way and it is useful to
examine the sensitivity of impact estimates obtained by matching methods to alternative
sets of conditioning variables.

4Heckman and Todd (1998) show that the log-odds ratio of the propensity scores es-
timated using the wrong weights (i.e. ignoring the fact that the data is choice-based
sampled) is a scalar multiple of the true log-odds ratio.



E(Yow:|P(X;), D; = 0) for the difference-in-difference estimator. There are
several different nonparametric estimators that could be used to estimate
these conditional means. In HIT, we use local smoothing estimators that
estimate the conditional mean by a weighted average of outcomes observed
for D, = 0 observations. A kernel estimator for

E(Yy|P(X;),D; =0)

is given by

with weights

P(X;)—P(X)

W) = —— T )
J ? Znok_l K(P(Xv)_P(Xk')>
(D=0} fin

K is a kernel function and h,, is a bandwidth, or smoothing parameter. (The
choice of kernel function and bandwidth will be further discussed below)

Nearest neighbor, kernel, and local linear estimators of the conditional
means can all be written in the same form as a weighted sum of the compar-
ison group outcomes. The estimators differ only in the choice of weighting
function W;(P(X;)).

(a) Simple average nearest neighbor estimators

The easiest estimator to implement is the simple average nearest neigh-
bor estimator. First determine how many neighbors you want to use (one,
two, five, ten, twenty, etc.). Then select the neighbors by their proximity
to treatment group P(X;) values - i.e. for each P(X;) value observed for
treatment group members, select the neighbors as the D; = 0 observations
with the closest propensity scores in terms of Euclidean distance. This can
be done as follows:

(a) form |P(X;) — P(Xj)| for treatment observation 7 and for all compar-
ison group observations j.



(b) sort the j observations in terms of |P(X;) — P(X;)| from lowest to
heighest.

(c) Let A, index the set of x observations with the lowest values of
|P(X;) — P(X;)| . These are the so-called nearest neighbors.

(d) Construct the matched outcome as a simple average over the outcomes
for the nearest neighbors.

. R
E(Yul P(X:), Di=0)=— > Y
=1

{DjeAs}

(b) kernel regression matching estimator

The simple average nearest neighbor estimator assigns either a weight
of % or zero to all comparison group observations. If a 5th nearest neighbor
estimator is used, for example, the second and third nearest neighbors receive
equal weight. A kernel regression estimator chooses the weights so that the
observations closer in terms of the distances |P(X;) — P(X})| receive greater
weight. This weighting is achieved through a kernel function. One kernel
function that is often used is the “biweight kernel, 7 given by

15
K(s) = 1—6(32 —1)? for |s| < 1
= 0 else.

Kernel functions are usually chosen to satisfy [ K(s)ds =1 and [ K(s)sds =

0.5 The biweight kernel is symmetric and satisfies these properties.
Implementing a kernel estimator requires choosing a bandwidth h,,, which

is analogous to the problem of choosing the number of neighbors in a nearest

neighbor setting. The weights given to D; = 0 observations depend on the
P(Xi)—P(Xj))'

values K ( T

There is a large literature on choosing bandwidths (or smoothing pa-
rameters) in nonparametric estimation.’ Consistency of the nonparametric
estimator requires that the bandwidth shrinks to zero as the sample size gets
large, but not at too fast a rate. One simple and effective way of choosing

5These conditions are used in showing consistency of kernel density and regression
estimators.
6See, for example, the survey article by Jones, Marron, and Sheather (1996).
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the bandwidth to set the bandwidth equal to the absolute value of the dis-
tance to the xth nearest neighbor (i.e. h, = |P(X;) — P(X;)|, where P(Xj)
is the propensity score for the X; nearest neighbor). When the bandwidth is
chosen in this way, it will vary from point to point of evaluation P(X;), with
smaller bandwidths for points of evaluation where there is more data in the
local neighborhood. Alternatively, a fixed bandwidth value could be speci-
fied (since P(X) lies in between 0 and 1, an appropriate bandwidth choice
might be 0.2 or 0.4). In any case, sensitivity of the estimates with respect to
bandwidth choice should be examined.

(c) local linear regression (LLR) estimator

Local linear regression is a nonparametric regression technique that im-
proves on the more traditional kernel regression estimator in two ways, as
was shown by Fan (1992,1993).

(i) The bias of the local linear regression estimator does not depend on
the design density of the data (i.e. on the density f(P(X))

(ii)) The order of convergence of the bias of the local linear regression
estimator is the same at boundary points as at interior points (it avoids the
boundary bias problem associated with kernel regression estimators).

Local linear regression differs from kernel regression only in terms of
weights, which for LLR are given by

Kij > ety Kiw(Py — P))* = [Ky (P — B)|[D>3%, Kiw(Pr — B)]

W](P(XZ)) = Z?L Kij ZZ():1 sz:(Pk: _ B)Q _ [Zyil KZ](P] _ R)]Q

where K, = K(%f@k))‘
Fan showed that the local linear estimator for E(Yy;|P(X;), D; = 0) can

also be viewed as the solution a to the weighted regression problem

no

min Y- (4 — o - b(P(X;) — PO LD
(o}

This provides another way of implementing the estimator. Namely, for each
value P(X;) run a weighted least squares regression of Yy, on a constant
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term and on P(X;) — P(X;) using data on D; = 0 persons. The estimated
intercept will be the estimate of E(Yy|P(X;), D; = 0). (Note that a separate
weighted least squares problem will need to be estimated for each point of
evaluation P(X;) , as changing the point of evaluation changes the weights.)

What if there are no close matches?

Nonparametric estimators of E(Yy|P(X;),D; = 0) are only defined at
points where the density f(P(X;)|D = 0) > 0. These means, roughly speak-
ing, that there should be P(X) values for the D = 0 group in the vicinity of
each P(X;) point of evaluation. D; = 1 observations with P(X;) values for
which there are no close matching P(X) observations should be excluded in
estimation.

We term the support of P(X) for which both f.(P(X)|D = 1) > 0
and f(P(X)|D = 0) > 0 the region of overlapping support. Implementing
matching estimators requires determining which P(X) values are in the over-
lapping support region. The mean program impact can only be obtained for
treatment group persons in the overlap region.

One way of determining which observations lie in the region of overlapping
support is simply to plot the histogram of the P(X;) values for both the treat-
ment and comparison groups and then visually identify any ranges of P(X;)
where there are no close matches. Another more rigorous way of determining
the overlapping support region is to calculate the density f(P(X;)|D = 0)
(using D = 0 comparison group data) at each of the P(X;) values observed
for D; = 1 observations. Nonparametric density estimators can be used to
estimate these densities. The standard nonparametric density estimator is
given by

f(PX)ID=0)= > K(

k=1
{Dr=0}

P(X:) — P(X5)
hn

)7

where K is a kernel function and h,, the bandwidth parameter.”
After the estimates of the density at each point are obtained, rank the
density estimates. Then find the 1 or 2% quantile of the positive density

"We do not recommend using a normal kernel in estimation because the normal kernel
has infinite support, so it will give all positive density estimates at all points of evaluation.
There are many different methods for choosing the bandwidth in density estimation. One
commonly used method is the rule-of-thumb method, described in Silverman (1986).



estimates. All values of P(X;) for which the estimated density exceeds this
threshhold are considered to be in the overlapping support region. Values
below the threshold are outside the region and should be excluded in esti-
mation.?

8Tt is possible that the majority of the treatment group data could be outside the region
of overlap, if the model for participation predicted unusually well. If this were the case,
then one might want to reestimate the propensity scores using an alternative set of X
variables.
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IV. Algorithm for a simple average nearest neighbor matching estimator
(cross-sectional)

We next provide some pseudo-code for a program that implements the
simpe average nearest neighbor matching estimator. This program assumes
that treated group persons not in the overlapping support region have al-
ready been eliminated from the dataset, either by visual inspection of the
histograms or by the trimming procedure based on the estimated densities
as described above.

# Pseudo-code Program to implement simple, average, cross—-sectional
# matching estimator

#

# Variable names

# ylvec is the vector of yl values for treatment group individuals
# yO vec is the vector of y2 values for comparison group individuals
# plvec is the vector of propensity scores for treatment group

# pOvec is the vector of propensity scores for comparison group

# n0 is the number of comparison group persons

# nl the number of treatment group persons

# diffp is a vector of absolute value of the p differences

# sortdiffp - the sorted diffp vector

# neighbor is the number of neighbors to use in averaging

# dist is the distance to the nearest neighbor

# matchy0 is the vector that contains the matched y0 values

# first read in the required data

call readdata(ylvec,yOvec,plvec,pOvec,nl,n0)

# loop through vector of treatment group persons
# and construct a matches for each person.
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neighor = 5
for i =1 to nl
yli

ylvec[i]

pli = plvec[i]

diffp = abs(plvec[i]-pOvec)

sortdiffp = sort(diffp)

dist = diffp[neigbor]

matchyO[i] = mean[yOvec[diffp<dist]]
end

# compute the average program impact as the mean over
# the difference in yl outcomes and the matched yO outcomes

impact = mean(ylvec-matchyO)
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