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Chapter 1: The evaluation problem
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Questions of interest in program evaluations

• Do program participants benefit from the program?
• Who chooses to participate in programs?
• What would be the program effects if extended to
nonparticipants?

• Do people differ in how they benefit from the program?
• Do the benefits exceed the costs?
• What is the social return from the program?
• Would an alternative program design achieve greater impact at
the same cost?
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Goals

• to describe different estimators and their identifying
assumptions

• to discuss the behavioral implications of these assumptions
• to illustrate how different kinds of estimators are related to
one another

• to summarize the data requirements of different methods
• to provide examples of how the evaluation methods have been
applied in the development, labor and health economics
literatures.
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Alternative approaches

• Randomization
• Regression estimators
• Matching
• Control function methods
• IV methods, MTE, LATE
• Regression-Discontinuity
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The Evaluation Problem

• Let D = 1 for persons who receive the intervention and D = 0
for persons who do not receive it.

• Each person has associated a (Y0,Y1) pair that represents the
outcomes that would be realized in the the untreated and
treated states.

• At most one of the two potential outcomes is observed.
• The observed outcome is

Y = DY1 + (1−D)Y0.

• The treatment effect is

∆ = Y1−Y0.

• Inferring gains from treatment therefore requires solving a
missing data problem.
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Parameters of interest

• Distinguish between
• direct effects: effects of program on participants
• indirect effects: effects of program on people who are not

directly participating

• Example: job voucher program that gives employers a subsidy
to hire workers may help program participants but may put
nonparticipants at a disadvantage.

• Most of literature aims to estimate direct effects.



Applications

Parameters of interest
(a) the proportion of program participants that
benefit from the program

Pr(Y1 > Y0|D = 1) = Pr(∆ > 0|D = 1)

(b) the proportion of the total population benefitting
from the program:

Pr(∆ > 0|D = 1)Pr(D = 1)

(c) quantiles of the impact distribution (such as the
median), where q is the selected quantile

inf
∆
{∆ : F (∆|D = 1) > q}

(d) the distribution of gains for individuals with some
characteristics X0

F (∆|D = 1,X = X0),
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Two key parameters

Much of the program evaluation literature develops methods for
estimating two key parameters of interest:1

(e) the average gain from the program for persons
with characteristics X

E (Y1−Y0|X ) = E (∆|X ).

(f) the average gain from the program for program
participants with characteristics X :

E (Y1−Y0|D = 1,X ) = E (∆|D = 1,X ).

1See, e.g., Rosenbaum and Rubin (1985), Heckman and Robb (1985), or
Heckman, Lalonde and Smith (1999).
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Distinction between ATE and TT

Suppose the outcomes in the treated and untreated states can be
written as:

Y1 = ϕ1(X ) +U1

Y0 = ϕ0(X ) +U0.

The observed outcome Y = DY1 + (1−D)Y0 is:

Y = ϕ0(X ) +D(ϕ1(X )−ϕ0(X )) +{U0 +D(U1−U0)}.

Assume E (U0|X ) = E (U1|X ) = 0. The gain to an individual from
participating in the program is:

∆ = ϕ1(X )−ϕ0(X )) + (U1−U0).
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What is known when people enter program?

• Individuals may or may not know their values of U1 and U0 at
the time of deciding whether to participate in a program.

• If people self-select into the program based on their
anticipated gains, then we would expect that E (U0|X ,D) 6= 0
and E (U1|X ,D) 6= 0.

• If the gain from the program depends on U1 and U0 and people
know future values of U1 and U0, or can forecast the values,
then we would expect people to make use of this information
when they decide whether to select into a program.
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ATE and TT in terms of model

In the notation of the above model for outcomes:

αATE (X ) = E (∆|X ) = ϕ1(X )−ϕ0(X ) +E (U1|X )−E (U0|X )

= ϕ1(X )−ϕ0(X ).

The average impact of treatment on the treated (TT) is

αTT (X ) = E (∆|X ) = ϕ1(X )−ϕ0(X ) +E (U1−U0|X ,D = 1).

As discussed in Heckman (2000), the average effect of treatment
on the treated icombines the “structural parameters” (the
parameters of the functions ϕ0(X ) and ϕ1(X )) with means of the
unobservables.
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Also, UT

For completeness, define the average impact of treatment on the
untreated (UT) as

αUT (X ) = E (∆|X ) = ϕ1(X )−ϕ0(X ) +E (U1−U0|X ,D = 0),

Parameter may be of interest if there are plans for expanding the
program.
The relationship between TT, ATE and UT is:

αATE (X ) = Pr(D = 1|X )αTT (X ) +Pr(D = 0|X )αUT (X ).
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Three types of assumptions
As discussed in Heckman, Lalonde and Smith (1999), there are
three types of assumptions that can be made.
In order of increasing generality, they are:

• (A.1) conditional on X , the program effect is the same for
everyone (U1 = U0)

• (A.2) conditional on X , the program effect varies across
individuals but U1−U0 does not help predict program
participation

• (A.3) conditional on X , the program effect varies across
individuals and U1−U0 does predict who participates in the
program.

ATE=TT under assumptions A.1 and A.2.
We will consider ways of estimating the αTT (X ) and αATE (X )
parameters of interest under these three different sets of
assumptions.



Applications

When does bias arise?

Consider the model

Y = ϕ0(X ) +D(ϕ1(X )−ϕ0(X )) +{U0 +D(U1−U0)}.

In terms of the two parameters of interest, the model can be
written as:

Y = ϕ0(X ) +DαATE (X ) +{U0 +D(U1−U0)} (1)

or

Y = ϕ0(X )+DαTT (X )+{U0+D[U1−U0−E (U1−U0|X ,D = 1)]}.
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When does bias arise?

Suppose the X are discrete.
We estimate an ordinary least squares regression:

Y = aX +bxXD + v .

This model is known as the common effect model.
A special case of the model assumes that the coefficient on D is
constant across X :

Y = aX +bD + v .
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When does bias arise?

• Bias for the αATE (X ) parameter arises if the mean of the error
term does not have conditional mean zero, i.e.

E (U0 +D(U1−U0)|X ,D)) 6= 0.

• Under assumption A.1 and A.2, potential bias arises only from
E (U0|X ,D) 6= 0.

• Under A.3, there is also the potential for bias from
E (U1−U0|D,X ) 6= 0.

• For estimating the αTT (X ) parameter, under A.1-A.3, bias
arises if E (U0|X ,D) 6= 0.
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Chapter 2: Randomization

Suppose select the comparison group using a randomization device
(e.g. a lottery).

Main benefits
• Ensures that the treatment and control groups have the same
distribution of observables and of unobservables.

• Ensures that the control group also satisfies program eligibility
criteria
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Potential problems in social experiments

• Randomization bias or so-called Hawthorne effects:
randomization may change the way a program operates.

• Contamination or cross-over effects: occurs when some
controls receive the treatment and/or some of the people
assigned to treatment do not receive it.

• Dropout: when some of the treatment group drop out before
completing the program.

• Attrition: Both controls and treatments may not respond to
surveys and response patterns may differ by treatment status.

• pioneer effects: can occur if the program has not been in
operation for long.(See Behrman and King, 2008, 2009). For
example, program implementers could be less experienced or
especially motivated.
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Internal verses external validity

• If the experimental protocol was followed and the problems
described earlier are not that significant, then the experiment
is said to be internally valid.

• An experiment has external validity if the sample participating
in the experiment is representative of the population of
interest.

• If the sample in the experiment is not similar, for example, is
younger, poorer or more likely to be female, then statistical
adjustment can sometimes be used to extrapolate from the
experimental results to the population of interest.
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For a recent critical view on the value of randomized control trials
in economic development studies, see Deaton (2009).
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When to randomize?

At what stage should randomization be applied? There are two
major approaches:

• Randomization after acceptance into the program
• Randomization of eligibility
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Randomization after application

Let R = 1 if randomized into the program (treatment group).
Let R = 0 if randomized out (control group).
Let Y ∗0 and Y ∗1 denote the outcomes observed under the
experiment.
Let D∗ = 1 denote someone who applies to the program and is
subject to the randomization. People with D∗ = 1 are would-be
participants, in the sense that they would participate in the
program if offered to them.
No randomization bias and random assignment implies:

E (Y ∗1 |X ,D∗ = 1,R = 1) = E (Y1|X ,D = 1)

E (Y ∗0 |X ,D∗ = 1,R = 0) = E (Y0|X ,D = 1)
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Randomization after application

Thus, the experiment gives the average effect of treatment for
individuals who apply to the program.

TT (X ) = E (Y1−Y0|X ,D = 1).

The experiment also gives the marginal distributions of Y1 and Y0

F (Y1|X ,D = 1)

F (Y0|X ,D = 1)

It does not give the joint distribution
F (Y0,Y1|x ,D = 1).
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Randomization of eligibility

• Alternative approach is to randomize on eligibility.
• A subset of people may be told randomly that they are eligible
for a program and then they can choose whether to participate
or not.

• Let e = 1 denote that a person is eligible for a program and
e = 0 if not eligible.

• People with D = 1 and e = 0 are people who would have liked
to participate but they were randomly not eligible, so we only
observe Y0 for them.
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Randomization of eligibility
We observe:

E (Y |X ,e = 1) = Pr(D = 1|x ,e = 1)E (Y1|X ,e = 1,D = 1) +

Pr(D = 0|x ,e = 1)E (Y0|X ,e = 1,D = 0)

E (Y |X ,e = 0) = Pr(D = 1|x ,e = 0)E (Y0|X ,e = 0,D = 1) +

Pr(D = 0|x ,e = 1)E (Y0|X ,e = 0,D = 0)

Because eligibility was randomized, we have

Pr(D = 1|X ,e = 1) = Pr(D = 1|X ,e = 0)

Pr(D = 0|X ,e = 1) = Pr(D = 0|X ,e = 0)

E (Y0|X ,D = 1,e = 1) = E (Y0|X ,D = 1,e = 0)

E (Y1|X ,D = 1) = E (Y1|X ,D = 1,e = 0)
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Randomization of eligibility

Thus, the difference in the previous two equations,
E (Y |X ,e = 1)−E (Y |X ,e = 0) = Pr(D = 1|X ,e = 1)[E (Y1|X ,D =
1)−E (Y0|X ,D = 1)].
Therefore, we obtain

TT (X ) =
E (Y |X ,e = 1)−E (Y |X ,e = 0)

Pr(D = 1|X ,e = 1)

.
The estimator replaces the means by their sample analogs.
When randomization is on eligibility, we can compare the means for
those randomized-in and randomized-out, dividing by the
proportion that selects into the program, given eligible.
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The estimator can easily be modified to account for a fraction of
the controls getting into the program despite not being eligible
(e.g. contamination). In that case, we obtain

TT (X ) =
E (Y |X ,e = 1)−E (Y |X ,e = 0)

Pr(D = 1|X ,e = 1)−Pr(D = 1|X ,e = 0)

where contamination implies Pr(D = 1|X ,e = 0) > 0. We do,
however, require that Pr(D = 1|X ,e = 1) 6= Pr(D = 1|X ,e = 0).
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Experiments in the presence of drop-out

• Program dropout occurs when people assigned to the
treatment group decide not to participate.

• If drop-out occurs early on, we can possible consider these
persons to be untreated.

• Can treat program dropout in the same way as randomization
of eligibility. The drop-outs were eligible (e = 1) for the
program but decided not to participate (D = 0).
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Intent-to-treat

• Alternatively, could define treatment as the “offer of
treatment." All people offered the treatment are participants,
regardless of whether they later attend the program.

• The relationship between the ITT program effect and the TT
effect is

ITT (X ) = TT (X )Pr(D = 1|e = 1,X ) +0Pr(D = 0|e = 1,X )

The second term implies that ITT penalizes a program for having a
low participation rate by giving an impact of zero to a fraction of
the group assigned to the program.
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Drop-out

Program drop-out after partial participation is a more difficult
problem. This happens when individuals attend the program for
awhile and then drop-out before completing it.
In that case, we need to either decide at what point they become
"treated" or else explicitly model the treatment outcome as a
function of a treatment dose level.
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Randomization Methods: Blocking

• If you are designing a randomized experiment, one option is to
simply randomize. With a large sample, the distributions of
the observables and unobservables within the R = 1 and R = 0
groups will be similar.

• Another option is to first divide the sample according the some
observable X characteristics and then randomize within X
subsets. This option is called blocking.

• The main advantage of blocking is that it ensures that the X
distribution is the same even in sample samples, so it is a
particularly useful method when the size of the sample being
randomized is modest.

• Blocking eliminates the need to control for those X variables
ex post, in a regression, and therefore can save on degrees of
freedom and provide greater precision in estimating the
treatment effect.



Applications

Place-based experiments

• Randomization can be done at an individual level or it may be
preferable to do it at the level of a larger unit, such as a family
or a school or a village.

• These are called place-based randomized experiments.
• One might choose a place-based design over an individual level
design if you expect that there may be spillover effects from
some individuals in the treatment to others, for examples, from
some students to others within a school

• Also, sometimes it is much earlier to implement an
intervention at the level of a higher unit, such as a school

• The main cost of doing a place-based randomized experiment
instead of a individual level experiment is loss of power,
because there are fewer individual units being randomized.
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Randomized roll-out designs

• Sometimes, a program is being gradually implemented and one
can use randomization to choose where it gets implemented
first, even though eventually it may be implemented
everywhere.

• The areas that are initially left out can temporarily serve as a
control group.

• Under such randomized roll-out designs, it is important not to
inform those units who are were initially left out that they will
eventually be included in the program, because the expectation
of receiving the program in the future could affect their
behavior in the present.
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Chapter 3: Simple regression estimators

• Nonexperimental estimators of program impacts use two types
of data to impute missing Y0 outcomes for program
participants:

• data on participants at a point in time prior to entering the
program

• data on nonparticipants.
• Three widely used methods for estimating E (∆|X ,D = 1),
(TT)

• (a) before-after estimator
• (b) cross-section estimator
• (c) difference-in-difference estimator

• Extensions to ATE parameter straightforward.
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Notation

• Denote the outcome measures by Y1it and Y0it , where i
denotes the individual and t the time period of observation,

Y1it = ϕ1(Xit) +U1it (2)
Y0it = ϕ0(Xit) +U0it .

• U1it and U0it distributed independently across persons and
satisfy E (U1it |Xit) = 0 and E (U0it |Xit) = 0.

• Xit represents conditioning variables that may either be fixed
or time-varying (such as gender or age), but whose
distributions are assumed to be unaffected by whether an
individual participates in the program.
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• Write observed outcome at time t as

Yit = ϕ0(Xit) +Ditα
∗(Xit) +U0it , (3)

• Dit denotes being a program participant and
α∗(Xit) = ϕ1(Xit)−ϕ0(Xit) +U1it −U0it is the treatment
impact for an individual.

• Prior to the program intervention, we observe
Y0it = ϕ0(Xit) +U0it for everyone.

• After the intervention we observe Y1it = ϕ1(Xit) +U1it for
those who received it (for whom Dit = 1, for t > t0, the time
of the intervention) and Y0it = ϕ0(Xit) +U0it for those who
did not receive it (for whom Dit = 0 in all time periods).
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• This model is a random coefficient model, because the
treatment impact can vary across persons.

• Assuming that U0it = U1it = Uit , yields the fixed coefficient or
common effect model.

• The TT parameter is:

αTT (Xit) = E (α
∗(Xit)|Dit = 1,Dit ′ = 0,Xit),

where the conditioning on Dit = 1,Dit ′ = 0 denotes that the
person was not in the program at time t ′ but did participate by
time t ′.
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Before-after estimators

• Uses pre-program data to impute missing Y0t for program
participants.

• Let t ′ and t denote two time periods, one before and one after
the program intervention.

• The before-after estimator is the least squares solution
obtained by

Yit −Yit ′ = ϕ0(Xit)−ϕ0(Xit ′) + α
∗
TT (Xit) + εit

where εit = [U1it −U0it −E (U1it −U0it |Dit = 1,Dit ′ = 0,Xit)]

+U0it −U0it ′
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Before-after estimators

Consistency of the estimator for αTT (Xit) requires:

E (εit |Dit = 1,Dit ′ = 0,Xit) = 0.

The term in brackets has conditional mean zero by construction, so
the key assumption required to justify application of this estimator
is:

E (U0it −U0it ′ |Dit = 1,Dit ′ = 0,Xit) = 0.
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Before-after estimators

• A special case where this assumption would be satisfied is if
U0it can be decomposed into a fixed effect error structure:
U0it = fi + vit , where fi does not vary over time and vit is a iid
random error that satisfies E (vit−vit ′ |Di = 1,Dit ′ = 0,Xit) = 0.

• This assumption allows selection into the program to be based
on fi (i.e. Dit is allowed to be correlated with fi ), so the
estimation strategy admits to person-specific permanent
unobservables that may affecting the program participation
decision.
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Before after estimators

• One drawback of a before-after estimation strategy is that
identification breaks down in the presence of time-specific
intercepts, making it impossible to separate effects of the
program from other general time effects on outcomes.

• Such a common time effect may arise, e.g., from life-cycle
wage growth over time or from time-varying shocks to the
economy.

• Before-after estimates can also be sensitive to the choice of
time periods used to construct the estimator.

• Minimal data requirements - two periods of cross-section data.
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Ashenfelter’s dip

• Many studies of employment and training programs in the U.S.
and in other countries note that earnings and employment of
training program participants dip down in the time period just
prior to entering the program.

• The pattern can arise from serially correlated transitory
downward shocks to earnings that may have been the impetus
for the person applying to the training program.

• The dip pattern can also result from program eligibility criteria
imposed that tend to select out the most disadvantaged
persons for participation.

• A before-after estimation strategy that includes the
preprogram "dip" period typically gives an upward biased
estimate of the program effect
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Cross-section Estimators

• Uses data on a comparison group of nonparticipants to impute
counterfactual outcomes for program participants.

• Requires only post-program data on Dit = 1 and Dit = 0
persons.

• The least squares solution to

Yit = ϕ0(Xit) +DitαTT (Xit) + εit ,

where εit = U0it +Dit [(U1it −U0it)−E (U0it −U1it |Dit = 1,Xit)]

estimated on Dit = 1 and Dit = 0 persons observed at time t.
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Cross-section Estimators

• Consistency requires that E (εit |Dit ,Xit) = 0..
• Same as assuming that E (U0it |Dit ,Xit) = 0.
• Rules out the possibility that people select into the program
based on expectations about their U0it , a strong assumption.
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Difference-in-differences estimators

• Commonly used in evaluation work.
• Measures the impact of the program intervention by the
difference in the before-after change in outcomes between
participants and nonparticipants.

• Define an indicator IDi that equals 1 for participants (for whom
Dit ′ = 0 and Dit = 1), and zero otherwise.

• The DID estimator is the least squares solution for α∗TT (Xit) in

Yit −Yit ′ = ϕ0(Xit)−ϕ0(Xit ′) + IDi αTT (Xit) + εit

εit = Dit [U1it −U0it −E (U1it −U0it |Dit = 1,Dit ′ = 0,Xit)]

+U0it −U0it ′ .

• Identical to before-after regression, except uses both
participant and nonparticipant data.
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Difference-in-differences estimators

• Main advantage: allows for time-specific intercepts that are
common across groups, included in ϕ0(Xit). and separately
identified from nonparticipant observations.

• The estimator is consistent if E (εit |Dit ,Xit) = 0, which would
be satisfied under a fixed effect error structure.

• Data requirements are either longitudinal or repeated
cross-section data on both participants and nonparticipants.
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Difference-in-differences estimators

Alternatively, DID can be implemented using a regression

Yit = ϕ0(Xit) + IDi γ +Ditα
∗
TT (Xit) + ε̃it for t = t ′, .., t.

ε̃it = U0it +Dit [U1it −U0it −E (U1it −U0it |Dit = 1,Xit)]
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Difference-in-differences estimators

• Allow for unobservable determinants of program participation
decisions and outcomes.

• But, fixed effect error structure only incorporates the potential
influence of time-invariant unobservables.
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Applications of DID estimators

• A study of the effect of school construction on education, and
of education on wages, in Indonesia (Duflo, 2001)

• Evaluation of efficient use of inputs within households in
Burkino Faso (Udry, 1996)

• Evaluation of impact of school meals on child nutrition in the
Philippines (Jacoby, 2002)

• Impact of flip charts on student academic performance in
Kenya (Glewwe et al. 2004)
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Within estimator applications: Duflo (2001)

• Uses a DID estimator to evaluate the effects of a school
construction program in Indonesia on education, and the effect
of education (years of schooling) on wages.

• In 1973, the Indonesian government launched a major school
construction program, the Sekolah Dasar INPRES program.
From 1973-1974 and 1978-1979, more than 61,000 primary
schools were constructed: an average of two schools per 1,000
children aged 5 to 14 in 1971.

• Enrollment rates among children aged 7 to 12 increased from
69 percent in 1973 to 83 percent by 1978.
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Duflo(2001)

• Duflo exploited this policy change to estimate the impacts of
this school construction program on education and earnings.

• Major estimation issue is that the placement of schools was
not random. This is due to the fact that the construction of
new schools was, in part, locally financed: more schools were
built in more affluent communities.

• Exposure to the school construction program varied by region
and year.

• Compares outcomes of older and younger individuals in regions
where the school construction program was more and less
active.
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Duflo (2001): Results
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Duflo (2001): Results

Results suggest that each new school constructed per 1,000
children was associated with:
- an increase of 0.12 to 0.19 in years of education, and
- a 1.5 to 2.7 percent increase in earnings for the first cohort fully
exposed to the program.

This implies estimates of economic returns to education ranging
from 6.8 to 10.6 percent. (Note: These estimates of economic
returns to education were obtained using instrumental variables
(IV) methods.)
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Chapter 4: Within estimators
• Identify program impacts from differences in outcomes within
some unit of observation, such as within a family, a school or a
village.

• Let Y0ijt and Y1ijt denote the outcomes for individual i , from
unit j , observed at time t,.

• For now, assume that U1it = U0it .

• Write the model for outcomes as:

Yijt = ϕ0(Xijt) + IDij γ +DijtαTT (Xijt) + εijt

• Assume that the error term εijt(= U0it) can be decomposed as:

εijt = θj + vijt

where θj represents the effects of unobservables that vary
across units but are constant for individuals within the same
unit and vijt are iid .
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Within estimators

• Taking differences between two individuals from the same unit
observed in the same time period:

Yijt −Yi ′jt = ϕ0(Xijt)−ϕ0(Xi ′jt) + (IDij − IDi ′j )γ +

(Dijt −Di ′jt)αTT (Xijt) + (vijt − vi ′jt).

• Consistency for αTT (Xijt) requires that

E (vijt − vi ′jt |Xijt ,Xi ′jt ,Dijt ,Di ′jt) = 0.
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Within estimators

• Assumption implies that within a particular unit, which
individual receives the treatment is random with respect to the
error term vijt .

• If U0it 6= U1it , it has to be assumed that which individual
receives treatment is random with respect to that individual’s
idiosyncratic gain from the program.

• Program may be nonrandomly targeted (e.g. at families or
villages), but within units, which individuals participated must
be unrelated to idiosyncractic program gain.

• Also, assumes no spillover effects from treating one individual
on others within the same unit.

• Allows treatment to be selective across units
(E (εijt |Dijt ,Xijt) 6= 0), because treatment selection can be
based on the unobserved heterogeneity term θj .
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Within estimators

• When the variation being exploited for identification of the
treatment effect is variation within a family, village, or school
at a single point in time, then requires a single cross-section of
data.

• If all individuals in a unit receive treatment at the same time,
then can take differences across different points in time, but
will suffer same drawbacks as before-after approach.
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Applications of Within estimators

• A study of the impact of a family planning and health
counseling program on child outcomes in the Philippines
(Rosenzweig and Wolpin, 1986)

• Evaluation of efficient use of inputs within households in
Burkino Faso (Udry, 1996)

• Evaluation of impact of school meals on child nutrition in the
Philippines (Jacoby, 2002)

• Impact of flip charts on student academic performance in
Kenya (Glewwe et al. 2004)
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Within estimator applications: Rosenzweig and Wolpin
(1986)

• Rosenzweig and Wolpin (1986)–assesses the impact of a family
planning and health counseling program on child outcomes in
twenty villages (barrios) in the Phillipines.

• Discusses the statistical problems created when the placement
of a program potentially depends on the outcome variable of
interest.

• For example, family planning programs are often placed in
areas where the need is considered to be the greatest. Not
accounting for nonrandom placement would lead to the
erroneous conclusion that family planning programs cause
fertility.
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Rosenzweig and Wolpin (1986): Data

- Information from surveys of 240 randomly selected households
residing in these barrios on the age, height, and weight of every
family member was collected in 1975 and 1979. Information was
also obtained in the 1979 survey round on the dates of introduction
of rural health clinics and family planning clinics financed by the
national government for each of the barrios.

- To estimate the effects of the facilities on child health, Rosenzweig
and Wolpin (1986) used a sample of 274 children (defined to be
under age 18 as of 1979) in 85 house-holds for whom height and
weight information exists in both years of the Laguna survey.
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Empirical analysis adopts the following statistical model:

Ha
ijt = ρ

a
ijβ + µi + µj + εijt ,

where Ha
ijt is a child health measure (height, weight) for child i

observed at age a, living in locality j at time t. ρa
ij represents the

length of time that child was exposed to the program intervention.

µi is a time invariant, child-specific unobserved health endowment
and µj is an unobserved locality level effect.

Compare results using different estimators: simple OLS regression
(without controlling for either µi or µj), OLS regression controlling
for community fixed effects (controlling for µj but not for µi ), and
first-differenced regressions (controlling for both µi and µj).



Applications

Rosenzweig and Wolpin (1986): Results

• The differences in estimated program exposure effects across
specifications are striking. In the height regressions (panel A), both
the cross-section and barrio fixed-effects estimate of health and
family planning clinic effects are generally negative with standard
errors that are at least as large as the point estimates.

• The child fixed-effect (longitudinal) estimates, however, indicate
that exposure to health and family planning clinics increases height,
with the family planning effect statistically significant and the
health clinic effect marginally significant.

• The point estimates indicate that the height of a child for whom no
health clinic existed would be 5 percent below that for a child
always exposed to a clinic, while exposure to a family planning
clinic increases height by 7 percent.

• The weight regressions tell a similar story (see Table 3).



Applications

Rosenzweig and Wolpin (1986): Results



Applications

Udry (1996)

• Used a within estimator to test for Pareto efficiency of allocations
within households, an implication of cooperative bargaining models.

• Data: rural households in Burkina Faso (ICRISAT data).

• In those households, and in many other African households,
agricultural production is carried out on several plots of land, with
different plots being controlled by different members of the
household.

• Pareto efficiency implies that farm inputs (seeds, fertilizer, etc.) be
allocated efficiently, so the yield on a particular plot should not
depend on which household member farms it.



Applications

Udry (1996) Estimation Strategy

Qhtci = X ′hciβ + γGhtci + λhtc + εhtci

where Q=plot yield,X=characterisics of the plot (land quality,
size), h is household, G=gender of the individual who farms the
plot (women=1,men=0), λhtc=household year-crop fixed effect.

Finds that, on average, plots controlled by women have higher
values of output per hectare than much smaller plots that are
controlled by men. However, men and women grow different types
of crops:



Applications

Udry (1996): Results



Applications

Jacoby (2002)

• Studies whether public transfers targeted towards children stick to
them, the flypaper effect, or whether their effect is diluted by
intra-household reallocation of food at home away from the child
and toward other household members.

• Studied the impact of a school feeding program in the Philippines
using data on 3,189 children in 159 schools.

• DID estimation strategy compares inter-day (school-day vs.
non-school day) calorie differentials across program participants and
nonparticipants.



Applications

Jacoby (2002)

• Analysis assumes that the only reason that the calorie intake of
program participants varies across school and non-school days,
relative to nonparticipants, is because of the school feeding
program.

• A potential threat to the validity of this DID strategy is that the
feeding program might be targeted at poorer households, and poor
children may spend more time working when not in school and
therefore have higher calorie consumption, which would tend to
bias the estimates in favor of finding a fly-paper effect.



Applications

Jacoby (2002)

CT
is = αPDP

s ×DA
is + αADA

is + δS +Uis

CT
is =daily calorie data for child i in school s, DA

is=indicator that
calorie data for child i in school s is for a school day, DP

s =indicator
for whether school s offers a feeding program,δs=a school fixed
effect,Uis unobserved child specific determinants of calorie intake.

Note: In some estimations, Jacoby (2002) replaced the term
DP

s ×DA
is with DP

s ×DA
is ×CP

is , where CP
is is calories from the

program. Thus, αP = 1 implies program calories stick with the
child.



Applications

Jacoby (2002): Results



Applications

Within estimator applications: Glewwe, Kremer, Moulin and
Zitzewitz (2004)

• Questions reliability of DID estimation approach in an application
evaluating the effectiveness of an educational intervention in
Kenyan schools.

• Program provided flip-charts as teaching aids in certain subjects.

• Compares DID estimates to those obtained from a randomized
social experiment.

• DID estimator compares changes over time in test scores in
flip-chart and non-flip-chart subjects within the schools that
received the intervention.

• The experiment randomly allocated the flip-charts to a subset of
schools.

• The experimental results indicate that flip-charts had little effect on
test scores, while the DID estimates are statistically significantly
different from zero at conventional levels.

• The authors conclude that the DID estimator is unreliable.



Applications

Kremer et. al. (2004): Results



Applications

Kremer et. al. (2004): Results



Applications

Kremer et. al. (2004): Results



Applications

Kremer et. al. (2004): Results



Applications

Chapter 5: Matching estimators

• A widely-used method of evaluation that compares the outcomes of
program participants with the outcomes of similar, matched
nonparticipants.

• Methods were first used in economics to evaluate effects of job
training programs, matching program participants to
nonparticipants. (See, e.g., Heckman, Ichimura and Todd (1997,
1998), Dehejia and Wahba (1999), Smith and Todd (2005).)

• Other early applications were to evaluate economic development
and anti-poverty programs.

• One of the main advantages of matching estimators is that they do
not require specifying the functional form of the outcome equation
and are therefore not susceptible to bias due to misspecification
along that dimension.



Applications

• Traditional matching estimators, proposed in the statistics
literature, pair each program participant with an observably similar
nonparticipant and interpret the difference in their outcomes as the
effect of the program intervention (see, e.g., Rosenbaum and
Rubin, 1983).

• More recently developed methods pair program participants with
more than one nonparticipant observation, using statistical methods
to estimate the matched outcome.

• Propensity score matching - match on conditional probability of
participating in the program (most popular approach).



Applications

Two main variants of matching estimators

• cross-sectional matching

• allow for selection on unobservables only in a very limited sense.

• applicable in contexts where the researcher is relatively certain that
the major determinants of program participation are accounted for
and that any remaining variation in who participates is due to
random factors.

• difference-in-difference matching

• identify treatment effects by comparing the change in outcomes for
treated persons to the change in outcomes for matched, untreated
persons.

• allow program selection to be based on unobserved time-invariant
characteristics of individuals.



Applications

Cross-sectional matching

Assume that the outcomes (Y0,Y1) are independent of
participation status D conditional on a set of characteristics Z ,

(Y0,Y1) ⊥⊥ D |Z . (4)

In the terminology of Rosenbaum and Rubin (1983) treatment

assignment is strictly ignorable given Z . Also assumed that

0< Pr(D = 1|Z ) < 1. (5)

Assumption required so that matches for D = 0 and D = 1
observations can be found.



Applications

Cross-sectional matching

If assumptions satisfied, then get mean program impacts by simply
substituting the Y0 distribution observed for the matched
non-participant group for the missing Y0 distribution for program
participants, holding constant observables.

Heckman, Ichimura and Todd (1998) show that the above
assumptions are overly strong if the parameter of interest is the
mean impact of treatment on the treated (TT )- require only
conditional mean independence on Y0:

E (Y0|Z ,D = 1) = E (Y0|Z ,D = 0) = E (Y0|Z ). (6)

When αTT is the parameter of interest, only require

Pr(D = 1|Z ) < 1. (7)



Applications

Cross-sectional matching

Under these assumptions, the mean impact of the program on
program participants can be written as

∆ = E (Y1−Y0|D = 1)

= E (Y1|D = 1)−EZ |D=1{EY (Y |D = 1,Z )}
= E (Y1|D = 1)−EZ |D=1{EY (Y |D = 0,Z )},

where the second term can be estimated from the mean outcomes
of the matched (on Z ) comparison group.

Note:
EZ |D=1{EY (Y |D = 0,Z )}= ∫z ∫y yf (y |D = 0,z)f (z |D = 1)dydz).



Applications

Cross-sectional matching

• Conditional independence assumption implies that D does not
predict values of Y0 conditional on Z .

• Selection into the program cannot be based directly on anticipated
values of Y0, other than that which is forecastable given Z .

• No restriction is imposed on Y1, so the method does allow
individuals who expect high levels of Y1 to select into the program.

• Accommodates selection on unobservables, but only in a very
limited sense through Y1.



Applications

Non-overlapping support

• With nonexperimental data, there may or may not exist a set of
observed conditioning variables for which matching conditions hold.

• A finding of Heckman, Ichimura and Todd (1997) and HIST
(1996,1998) in their application of matching methods to data from
the JTPA experiment is that 0< Pr(D = 1|Z ) < 1 was not
satisfied, because no close match could be found for a fraction of
the program participants.

• If there are regions where the support of Z does not overlap for the
D = 1 and D = 0 groups, then matching is only justified when
performed over the region of common support.

• The estimated average treatment effect must then be defined
conditionally on the region of overlap.



Applications

Rosenbaum and Rubin (1983) provide a theorem that is useful in
reducing the dimension of the conditioning problem. They show
that for random var. Y and Z and a discrete random var. D:

E (D|Y ,P(D = 1|Z )) = E (E (D|Y ,Z )|Y ,Pr(D = 1|Z )),

so that

E (D|Y ,Z ) =E (D|Z ) =⇒E (D|Y ,Pr(D = 1|Z )) =E (D|Pr(D = 1|Z )).



Applications

Using the Rosenbaum and Rubin (1983) theorem, the matching
procedure can be broken down into two stages:

• In the first stage, the propensity score Pr(D = 1|Z ) is estimated,
using a binary discrete choice model such as a logit or probit or a
semiparametric estimation method (such as Ichimura’s (1993)
semiparametric least squares (SLS))

• In the second stage, individuals are matched on the basis of their
first stage estimated probabilities of participation.



Applications

Alternative matching estimators

Let P = P(D = 1|Z ). A typical cross-sectional matching estimator
takes the form:

α̂M =
1
n1

∑
i∈I1∩SP

[Y1i − Ê (Y0i |D = 1,Pi )] (8)

Ê (Y0i |D = 1,Pi ) = ∑
j∈I0

W (i , j)Y0j ,

- I1 denotes the set of program participants, I0 the set of
non-participants
- SP the region of common support.
- n1 denotes the number of persons in the set I1∩SP .
- The match for each participant i ∈ I1∩SP is constructed as a
weighted average over the outcomes of non-participants, where the
weights W (i , j) depend on the distance between Pi and Pj .



Applications

Alternative matching estimators

• Define a neighborhood C (Pi ) for each i in the participant sample.

• Neighbors for i are non-participants j ∈ I0 for whom Pj ∈ C (Pi ).

• Persons matched to i are those people in set Ai where
Ai = {j ∈ I0 | Pj ∈ C (Pi )}.

• Alternative matching estimators (discussed below) differ in how the
neighborhood is defined and in how the weights W (i , j) are
constructed.



Applications

Nearest Neighbor matching

Traditional, pairwise matching sets

C (Pi ) = min
j
‖Pi −Pj‖ , j ∈ I0.

- That is, the non-participant with the value of Pj that is closest to
Pi is selected as the match and Ai is a singleton set. - The
estimator can be implemented either matching with or without
replacement. When matching is performed with replacement, the
same comparison group observation can be used repeatedly as a
match. A drawback of matching without replacement is that the
final estimate will likely depend on the initial ordering of the treated
observations for which the matches were selected.



Applications

Caliper matching (Cochran and Rubin, 1973)

• A variation of nearest neighbor matching that attempts to avoid
bad matches (those for which Pj is far from Pi ) by imposing a
tolerance on the maximum distance ‖Pi −Pj‖ allowed.

• A match for person i is selected only if ‖Pi −Pj‖< ε, j ∈ I0,
where ε is a pre-specified tolerance.

• Neighborhood is C (Pi ) = {Pj | ‖Pi −Pj‖< ε}.

• Treated persons for whom no matches can be found excluded (way
of imposing a common support condition).

• Difficult to know a priori what choice for the tolerance level is
reasonable.



Applications

Stratification or interval matching

• Common support of P is partitioned into a set of intervals.

• Separate impact calculated by taking the mean difference in
outcomes between the D = 1 and D = 0 observations within the
interval.

• Weighted average of the interval impact estimates, using the
fraction of the D = 1 population in each interval for the weights,
provides an overall impact estimate.

• Dehejia and Wahba (1999) choose intervals selected such that the
mean values of the estimated Pi ’s and Pj ’s are not statistically
different from each other within intervals.



Applications

Kernel matching

Construct matches using a weighted average over multiple persons
in the comparison group.

Consider a nonparametric kernel matching estimator, given by

α̂KM =
1
n1

∑
i∈I1

Y1i −
∑j∈I0 Y0jG

(
Pj−Pi

an

)
∑k∈I0 G

(
Pk−Pi

an

)
 .

where G (·) is a kernel function and an is a bandwidth parameter.
(See Heckman, Ichimura and Todd (1997, 1998) and Heckman,
Ichimura, Smith and Todd (1998)

The weighting function, W (i , j), is equal to
G
(Pj−Pi

an

)
∑k∈I0 G

(
Pk−Pi

an

) .



Applications

Kernel matching

• For a kernel function bounded between -1 and 1, the neighborhood
is C (Pi ) = {|Pi−Pj

an
| ≤ 1}, j ∈ I0.

• Under standard conditions on the bandwidth and kernel function
(G (·) integrates to one, has mean zero and that an→ 0 as n→ ∞

and nan→ ∞.),
∑j∈I0 Y0jG

(Pj−Pi
an

)
∑k∈I0 G

(
Pk−Pi

an

) is a consistent estimator of

E (Y0|D = 1,Pi ).



Applications

Determining the overlapping support region

To determine the support region, Heckman, Ichimura and Todd
(1997) use kernel density estimation methods:

ŜP = {P : f̂ (P|D = 1) > 0 and f̂ (P|D = 0) > cq},

where f̂ (P|D = d), d ∈ {0,1} are nonparametric density estimators
given by

f̂ (P|D = d) = ∑
k∈Id

G
(
Pk −P
an

)
,

and where an is a bandwidth parameter.



Applications

Determining the overlapping support region

To ensure that the densities are strictly greater than zero, it is
required that the densities be strictly positive density (i.e. exceed
zero by a certain amount), determined using a “trimming level” q.
The set of eligible matches is:

Ŝq = {P ∈ ŜP : f̂ (P|D = 1) > cq and f̂ (P|D = 0) > cq},

where cq is the density cut-off level that satisfies:

sup
cq

1
2J ∑
{i∈I1∩ŜP}

{1(f̂ (P|D = 1) < cq +1(1(f̂ (P|D = 0) < cq} ≤ q.

J is the cardinality of the set of observed values of P that lie in
I1∩ ŜP .
- Matches are constructed only for participants for which propensity
scores lie in Ŝq.



Applications

• The literature has developed some alternative, more efficient
estimators. See, for example, Hahn (1998) and Hirano, Imbens and
Ridder (2003).

• Heckman, Ichimura and Todd (1998) propose a regression-adjusted
matching estimator that replaces Y0j as the dependent variable
with the residual from a regression of Y0j on a vector of exogenous
covariates.

• In principal, imposing exclusions restrictions can increase efficiency.
In practice, there was not much gain from using the
regression-adjusted matching estimator.



Applications

Difference-in-difference matching

• For a variety of reasons there may be systematic differences
between participant and nonparticipant outcomes, even after
conditioning on observables, which could lead to a violation of the
matching assumptions.

• For example, could have program selectivity on unmeasured
characteristics, or levels differences in outcomes across different
labor markets in which the participants and nonparticipants reside.

• A difference-in-differences (DID) matching strategy, as defined in
Heckman, Ichimura and Todd (1997) and Heckman, Ichimura,
Smith and Todd (1998), better accomodates the potential for
selection on unobservables by allowing for temporally invariant
differences in outcomes between participants and nonparticipants.



Applications

Difference-in-difference matching

Estimator is analogous to the standard DID regression estimator
defined, but reweights the observations according to the weighting
functions implied by matching estimators.
Assumes that that

E (Y0t −Y0t ′ |P,D = 1) = E (Y0t −Y0t ′ |P,D = 0),

where t and t ′ are time periods after and before the program
enrollment date.
Also requires the support condition, which must hold in periods t
and t ′.



Applications

Difference-in-difference matching

The local linear difference-in-difference estimator is:

α̂KDM =
1
n1

∑
i∈I1∩SP

{
(Y1ti −Y0t ′i )− ∑

j∈I0∩SP

W (i , j)(Y0tj −Y0t ′j)

}
,

with LLR weights. If repeated cross-section data

α̂KDM =
1
n1t

∑
i∈I1t∩SP

{
(Y1ti − ∑

j∈I0t∩SP

W (i , j)Y0tj

}

− 1
n′1t
× ∑

i∈I1t′∩SP

{
(Y1t ′i − ∑

j∈I0t′

W (i , j)Y0t ′j

}
,

where I1t , I1t ′ , I0t , I0t ′ denote the treatment and comparison group
datasets in each time period.



Applications

Difference-in-difference matching

- Allows selectivity into the program to be based on anticipated
gains from the program, but only in a limited way

- D can help predict the value of Y1 given P., but D cannot predict
changes Y0 (i.e. Y0t −Y0t ′) conditional on P.



Applications

Matching with choice-based sampled data

• Samples used in evaluating the impacts of programs are often
choice-based, with program participants being oversampled relative
to their frequency in the population.

• Weights are required to consistently estimate the probabilities of
program participation, where the weights equal the ratio of the
proportion of program participants in the population relative to the
proportion in the sample.(see, e.g., Manski and Lerman (1977)).

• True population proportions usually are not obtainable from the
sample and have to be derived from some other sources.



Applications

Matching with choice-based sampled data

• When weights are known, the Manski and Lerman (1977)
procedure can be used to consistently estimate propensity scores.

• If weights not known, Heckman and Todd (1995) show that with a
slight modification, matching methods can still be applied, because
the odds ratio (P/(1−P)) estimated using a logistic model with
incorrect weights (i.e. ignoring the fact that samples are
choice-based) is a scalar multiple of the true odds ratio, which is
itself a monotonic transformation of the propensity scores.

• Matching can proceed on the (misweighted) estimate of the odds
ratio (or the log odds ratio).

• Failure to account for CBS will not affect nearest-neighbor point
estimates, but will matter for kernel or local linear matching
methods, because these methods take into account the absolute
distance between the P observations.



Applications

When does bias arise in matching?

- Success of a matching estimator depends on the availability of
observable data to construct the conditioning set Z , such that the
matching assumptions are satisfied. - Suppose only a subset
Z0 ⊂ Z of the variables required for matching is observed. The
propensity score matching estimator based on Z0 then converges to

α
′
M = EP(Z0)|D=1 (E (Y1|P(Z0),D = 1)−E (Y0|P(Z0),D = 0)) .

(8)
- The bias for the parameter of interest, E (Y1−Y0|D = 1), is

biasM = E (Y0|D = 1)−EP(Z0)|D=1{E (Y0|P(Z0),D = 0)}.



Applications

Choosing the matching variables

• No statistical procedure for choosing the set. The set Z that
satisfies the matching conditions is not necessarily the most
inclusive one. Augmenting a set that satisfies the conditions for
matching could lead to a violation of the conditions.

• Using too many conditioning variables could also exacerbate a
common support problem.

• Heckman, Ichimura, Smith and Todd (1998), Heckman, Ichimura
and Todd (1999) and Lechner (2001) show that which variables are
included in the estimation of the propensity score can make a
substantial difference to the estimator’s performance.

• Biases tended to be more substantial when cruder sets of conditioning
variables where used.

• The set Z can be chosen to maximize the percent of people correctly
classified by treatment status under the model.



Applications

Other determinants of the performance of matching
estimators

• Perform best when the treatment and control groups are located in
the same geographic area, so that regional effects on outcomes are
held constant.

• Important to use the same survey to gather data on the comparison
group and treatment group, so variables measured in same way.

• Difference-in-difference matching methods are more reliable than
cross-sectional matching methods when treatments and controls are
mismatching geographically or in terms of the survey instrument.

• The success of matching depends strongly on the data capturing
the key determinants of the program participation decision.



Applications

Balancing tests
• Rosenbaum and Rubin (1983) present a theorem that does not aid
in choosing which variables to include in Z , but which can help in
determining which interactions and higher order terms to include in
the propensity score model for a given set of Z variables.

• The theorem states that

Z⊥⊥D|Pr(D = 1|Z ),

or equivalently

E (D|Z ,Pr(D = 1|Z )) = E (D|Pr(D = 1|Z )).

• After conditioning on Pr(D = 1|Z ), additional conditioning on Z
should not provide new information about D. If there is still
dependence on Z , this suggests misspecification in the model used
to estimate Pr(D = 1|Z ).

• Theorem holds for any Z , including sets Z that do not satisfy the
conditional independence condition required to justify matching. As
such, the theorem is not informative about what set of variables to
include in Z .



Applications

Balancing tests

• Motivates a specification test for Pr(D = 1|Z ), which tests whether
or not there are differences in Z between the D = 1 and D = 0
groups after conditioning on P(Z ).

• Various testing approaches have been proposed in the literature.

• Eichler and Lechner (2001) use a test based on standardized differences in terms of
means of each variable in Z , squares of each variable in Z and first-order interaction
terms between each pair of variables in Z .

• Dehijia and Wahba (1999,2001) divide the observations into strata based on estimated

propensity scores and do tests within strata. Common to use five strata.



Applications

Balancing tests

Another way of implementing the balancing test estimates a
regression of each element of the set Z , Zk on D interacted with a
power series expansion in P(Z ):

Zk = α + β1P(Z ) + β2P(Z )2 + β3P(Z )3 + ...+ βjP(Z )j +

γ1P(Z )D + γ2P(Z )2D + γ3P(Z )3D + ...+ γjP(Z )jD + ν ,

and then tests whether the estimated γ coefficients are jointly

insignificantly different from zero.

- When significant differences are found , higher order and
interaction terms in those variables are added to the logistic model
and the testing procedure is repeated, until such differences no
longer emerge.



Applications

Assessing the variability of matching estimators

- Distribution theory for cross-sectional and DID kernel and local
linear matching estimators is derived in Heckman, Ichimura and
Todd (1998), although implementing the asymptotic formulae can
be cumbersome.
- Bootstrapping can be used, but only if estimators use a fixed
bandwidth.
- Imbens and Abadie (2004a) shows that standard bootstrap
resampling methods are not valid for assessing the variability of
nearest neighbor estimators and they present alternative standard
error formulae.



Applications

Chapter 6: Modeling program participation

• Propensity score plays an important role in the implementation of
matching estimators and in other estimators considered later.

• There is no statistical method for determining which observed
variables belong in the propensity score model, but one can use
economic theory as a guide.

• Use model similar to that developed in Heckman, Lalonde, and
Smith (1999)



Applications

Modeling program participation

• Assume individuals have the option to take training in period k .

• Prior to k , we observe Y0j , j = 1, ..,k .

• After k , we observe two potential outcomes Y0t and Y1t

• To participate in training, individuals must apply and be accepted,
so there may be several decision-makers governing participation.

• D = 1 if participates and D = 0 else.

• Participation decisions are based on maximization of future earnings
and that future earnings are uncertain.



Applications

Modeling program participation

D = 1 if

E [
T=k

∑
j=1

Y1,k+j

(1+ r)j −C −
T=k

∑
j=0

Y0,k+j

(1+ r)j |Ik ]≥ 0

- First term is the earnings stream if the person participates in the
program
- C is the direct cost of training.
- The last term is the earnings stream if the person does not
participate, which includes period k earnings.
- Ik is the information set at time k used to form expectations
about future earnings.



Applications

Modeling program participation

Implications about who takes training and about the value of past
earnings in modeling program participation:

1. Past earnings are irrelevant except for value in predicting future
earnings

2. Persons with lower foregone earnings or lower costs are more likely
to participate in programs

3. Older persons and persons with higher discount rates are less likely
to participate

4. The decision to take training is correlated with future earnings only
through the correlation with expected future earnings.



Applications

Modeling program participation

A special case of this model is when the treatment effect is
constant, in which case

D = 1 if E [
T=k

∑
j=1

α

(1+ r)j |Ik ]≥ C +Y0k

If period k earnings (Y0k) are temporarily low (e.g. currently
unemployed), then people are more likely to enroll in the program.
This implication of the model is consistent with the Ashenfelter Dip
pattern.



Applications

Modeling program participation

To get an empirically implementable model, as in Heckman,
Lalonde and Smith (1999), assume that the expected future
rewards are modeled as a function of some X variables that capture
the information set used in forecasting future earnings:

H(X ) =
T=k

∑
j=1

Y1,k+j

(1+ r)j −
T=k

∑
j=1

Y0,k+j

(1+ r)j |Ik ]

and that costs of training, including of foregone earnings costs are
unobserved:

V = C +Y0k .



Applications

Modeling program participation

Then, D = 1 if H(X )−V ≥ 0. If we further assume that V is
stochastically independent of X and distributed either logistic or
normal (with mean µv and variance σ2

v ), we get either a logistic or
normal propensity score model:

Pr(D = 1|X ) =
eH(X )

1+ eH(X )

or

Pr(D = 1|X ) = Φ(
H(X )−µv

σv
)



Applications

Modeling program participation

1. To summarize, variables included in the propensity score should be
those variables that an individual might use to forecast future
outcomes, which determine the benefits from participating in a
program.

2. Past outcomes are relevant to the extent that they are used to
forecast future outcomes, with or without the treatment
intervention.



Applications

Evidence on performance of matching estimators

• We can study the performance of nonexperimental estimators by
comparing experimental and nonexperimental estimates.

• One strategy is to directly compare a randomized-out control group
to a nonperimenal group.

• Because neither group received treatment, any impact estimator
applied to those groups should give a value of zero.

• Can also study how performance varies with conditioning variables
or data sources used.



Applications

Data quality



Applications

Data quality
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Dip pattern
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Dip pattern
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Dip pattern
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Dip pattern
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Prop Score Model



Applications

CS Matching
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CS Matching



Applications

DID matching



Applications

DID matching



Applications

Using No-shows as comparison group



Applications

Matching applications in development

- Jalan and Ravaillon (2003a) use p0score matching techniques to
evaluate effects of a workfare program in Argentina on wages.
Jalan and Ravaillon (2003b) use p-score matching to study effects
of piped water in rural India on child health outcomes.
- Handa and Mallucio (2006) study the performance of matching
estimators by comparing matching-based estimates to estimates
obtained from a randomized social experiment. Find that
estimators perform well only for outcomes that are relatively easily
measured, such as schooling attainment, less well for more complex
such as expenditures. Imposing common support and choosing
highly comparable comparison groups improvesperformance.
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Matching applications in development

- used in evaluation of the urban Oportunidades CCT program in
Mexico .
- Matches for treatment group households were drawn from two
data sources: families who did not sign up for the program but who
otherwise met the eligibility criteria, and families who met the
eligibility criteria for the program but who were living in areas
where the program was not yet available.
- The estimated propensity score model used to impute propensity
scores in nonintervention areas. - DID matching estimators applied
when possible.
- Find statistically significant program impacts on school
enrollment, educational attainment, dropout rates, employment and
earnings of youth, and on the numbers of hours spent doing
homework. (Behrman, Garcia-Gallardo, Parker, and Todd, and
Velez-Grajales (2012)
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Matching applications in development

Galiani, Gertler, and Schargrodsky (2005) analyze effects of
privatization of water services on child mortality in Argentina using
DID matching.
- Godtland, Sadoulet, de Janvry, Murgai and Ortiz (2004) apply
cross-sectional p-score matching estimators to evaluate effects of
agricultural extension services in Peru.
- Gertler, Levine and Ames (2004) use CS matching to study of
effects of parental death on child outcomes.
- Lavy (2004) study effects of a teacher incentive program in Israel
on student performance.
- Angrist and Lavy (2001) study effects of teacher training on
children’s test scores in Israel
Chen and Ravaillon (2005), in a study of a poverty reduction
project in China.
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Chapter 7: Control function estimation

• Also known as generalized residual methods

• Proposed as a solution to the evaluation problem in Heckman and
Robb (1986), but are related to Heckman (1976, 1979, 1980).

• Early applications are Willis and Rosen (1979), Heckman and
Sedlacek (1985).

• Defined within the context of an econometric model for the
outcome process.



Applications

Control function estimators

• Explicitly recognize that nonrandom selection into the program
gives rise to an endogeneity problem and aim to obtain unbiased
parameter estimates by explicitly modeling the source of the
endogeneity.

• Allow selection into the program to be based on time varying
unobservable variables, under some assumptions needed to secure
identification of the treatment effect.



Applications

Write the model for outcomes as

Y = ϕ0(X ) +DαTT (X ) + ε̃,

where

αTT (X ) =E (Y1−Y0|X ,D = 1) = ϕ1(X )−ϕ0(X )+E (U1−U0|X ,D = 1)

is the parameter of interest (TT(X)) and

ε̃ = U0 +D(U1−U0−E (U1−U0|X ,D = 1)).



Applications

• Decision to participate may be endogenous with respect to the
outcomes, so expect that E (U0|X ,D) 6= 0.

• Heckman (1976,1979) showed that the endogeneity problem can be
viewed as an error in model specification
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Adding and subtracting
E (U0|X ,D) = DE (U0|D = 1,X ) + (1−D)E (U|D = 0,X ), rewrite
the outcome model as

Y = ϕ0(X ) +DαTT (X ) +E (U|D = 0,X ) + (9)
D[E (U0|D = 1,X )−E (U0|D = 0,X )] + ε

= ϕ0(X ) +DαTT (X ) +K0(X ) +D[K1(X )−K0(X )] + ε

where

K0(X ) = E (U0|D = 0,X )

K1(X ) = E (U0|D = 1,X )

ε = D{U0−E (U0|D = 1,X )}+ (1−D){U0−E (U0|D = 0,X )}
+ D{U1−U0−E (U1−U0|D = 1,X )}
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- By construction, E (ε|X ,D) = 0.

- K1(X ) and K0(X ) are termed control functions.

- When these functions are known up to some finite number of
parameters, they can be included in the model to control for the
endogeneity and regression methods (either linear or nonlinear)
applied to consistently estimate program.
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- If no restrictions where placed on either αTT (X ), K1(X ), or
K0(X ), then the treatment impact parameter (αTT (X )) could not
be separately identified from the control functions.

- Different implementations of control function estimators impose
different kinds of restrictions.

- Usually, functional form restrictions and/or exclusion restrictions
(variables that determine the participation process (i.e. the choice
of D) be excluded from the outcome equation).
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Identification through index restrictions

- Heckman and Robb (1986) show how index restrictions can be
used to secure identification of αTT (X ).

- Participation is assumed to depend on a set of characteristics Z
through an index h(Zγ) and on unobservables V :

D = 1 if h(Zγ) +V > 0,= 0 if h(Zγ) +V ≤ 0

h(Zγ) +V represents the net utility from participating in a
program. (McFadden, 1981, and Manski and McFadden, 1981).
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Under this model, the function K0(X ) = E (U0|D = 1,X ) can be
written as

E (U0|D = 1,X ) = E (U0|h(Zγ) +V > 0,X ) (10)

=

∫
∞

−h(Zγ)

∫
∞

−∞
uf (u,v |X )dudv∫

∞

−h(Zγ)

∫
∞

−∞
f (u,v |X )dudv

. (11)

If F (U0,V |X ) is assumed to be continuous with full support in R2

and FV (·) is invertible, then the index Zγ can be written as a
function of the conditional probability of participation.
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Identification at infinity

- As h(Zγ) approaches infinity, E (U0|D = 1,Z ) approaches 0 (recall
that we assumed that E (U0|Z ) = 0).
- For this reason, subgroups with a high probability of participating
in the program (i.e. h(Zγ) close to infinity) can be used to secure
identification of model parameters.
- Essentially, there is no selection problem for groups who always
participate. (Heckman, 1990).
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Pr(D = 1|Z ) = Pr(V >−h(Z ;γ))

= 1−FV (−h(Z ;γ)).

=⇒ h(Z ;γ) =−F−1v (−Pr(D = 1|Z ))
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Heckman and Robb (1986) note that with the additional
assumption that the joint distribution of the unobservables, U0 and
V , does not depend on X , except possibly though the index,
h(Z ;γ) :

f (U0,V |X ) = f (U0,V |h(Z ;γ)),

then E (U0|D = 1,X ) can be written solely as a function of the
probability of participating in the program, Pr(D = 1|Z ):

E (U0|D = 1,X ) = E (U0|D = 1,P(Z )) = K1(P(Z ))

E (U0|D = 0,X ) = E (U0|D = 0,P(Z )) = K0(P(Z )). (12)

- A stronger assumption that would also imply index sufficiency is
independence, f (U0,V |X ) = f (U0,V ).
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- index sufficiency greatly simplifies the problem of estimating the
Kd (X ), d ∈ {0,1} functions and also aids in the identification
problem.

- Suppose ϕ0(X ) and h(Zγ) were both linear in the regressors.
With one continuous variable included in Z but excluded from X ,
we can allow for overlap between X and Z and even for the case
where X are fully contained in Z .(Cosslett, 1984).

- If the control functions are estimated nonparametrically,
distinguishing the treatment effect from the control function
requires the application of identification at infinity methods (more
later..)
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Heckman (1976,1979), assumed that U0 and V are jointly normally
distributed which implies a parametric form for K1(P(Z )) and
K0(P(Z )):

E (U0|D = 1,Z ) = K1(P(Z )) =
σU0V

σV 2

φ(−h(Zγ))

1−Φ(−h(Zγ))

E (U0|D = 0,Z ) = K0(P(Z )) =
σU0V

σV 2

−φ(−h(Zγ))

Φ(−h(Zγ))
.
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- Heckman, Ichimura, Smith and Todd (1996), invoke index
sufficiency and nonparametrically estimate the K (·) functions are
estimatedas a function of the probability of participating in the
program., estimated by a probit model)

- This leads to a partially linear model and they use a variation of
the Robinson (1988) estimator to estimate it.

- They test and do not reject the index sufficiency restriction.
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Identification at infinity

- When the K1(P(Z )) and K0(P(Z )) are estimated
nonparametrically, the intercept of the K1(P(Z ))−K0(P(Z ))
cannot be separately identified from the treatment effect (αTT (X )).

- Under normality, functional form assumptions may be sufficient,
assuming that the form of αTT (X ) is not co-linear with the
K1(P(Z ))−K0(P(Z )) functions.

- Andrews and Schafgans (1998) develop an empirically
implementable semiparametric version of Heckman’s "identification
at infinity" estimator.
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Identification at infinity

- Approach is feasible when there is a subgroup in the data for
which Pr(D = 1|Z ) = 1 for some set Z , meaning that individuals
with that set of characteristics always select into the program.

- In the index model described above, this would be the group for
which h(Zγ) is close to infinity.
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A Comparison of Control Function and Matching Methods

• Conventional matching estimators can in some cases be viewed as a
restricted form of a control function estimator.

• Recall that traditional cross-sectional matching methods assume
that selection is on observables, whereas control function methods
explicitly allow selection into programs to be based on observables
Z and unobservables V .
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The assumption that justifies matching outcomes on the basis of Z
is

E (Y0|D = 1,Z ) = E (Y0|D = 0,Z ).

If X ⊂ Z , then, in terms of previous model, this assumption implies
that

E (U0|D = 1,Z ) = E (U0|D = 0,Z ).
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This assumption is equivalent to assuming that the control
functions are equal for both the D = 0 and D = 1 groups

K1(P(Z ))−K0(P(Z )) = 0, (13)

in which case the model for outcomes can be written as

Y0 = ϕ0(X )+Dα
∗(X )+K0(P(Z ))+D{U1−U0−E (U1−U0|D = 1,X )}.
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- This special case is selection on observables. (see Heckman and
Robb, 1986; Heckman, Ichimura, Smith and Todd, 1995; and
Barnow, Cain and Goldberger, 1980).

- When selection is of this form, many identification problems that
arise in trying to separate the treatment impact αTT (X ) from the
bias function K1(X ) go away.

- Under the normal model, K0(P(Z )) = K1(P(Z )) will, in general,
not be satisfied unless the errors have zero covariance, σU0V = 0.
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Comparison of normal/nonpar Models (JTPA data)

Pointwise Bias and Comparison with Normal Model 



Applications

Stability of bias function over time

Pointwise bias over time, conditional 
on P 



Applications

Chapter 8: Instrumental Variables and LATE estimation

• Instrumental variables methods provide another approach to
estimating program effects in the presence of nonrandom
self-selection

• Can accommodate selection on unobservables

• Will consider applications with discrete and with continuous
instruments.
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The Wald Estimator

Consider the treatment effect model:

Y = ϕ0(X ) +Dα
∗
TT (X ) + ε̃,

where

α
∗
TT (X ) = E (Y1−Y0|X ,D = 1) = α(X ) +E (U1−U0|X ,D = 1)

is the parameter of interest (TT) and

ε̃ = U0 +D(U1−U0−E (U1−U0|X ,D = 1)).
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The Wald estimator

- Suppose that there is an exclusion restriction, a variable Z that
affects the program participation decision but does not enter into
the outcome equation.
- Also, assume that the conditioning variables X and the instrument
Z are binary and that the instrument takes on the values Z0 and Z1.
- Assume that we condition on X by first partitioning the dataset
by X and then use the instrument to estimate the program effect
using the method of instrumental variables within X subsamples.
- The identifying assumption is that

E (U0|X ,Z ) = E (U0|X ).
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The Wald estimator

The so-called Wald estimator is:

α̂
∗
IV (X ) =

Ê (Y |Z = Z0,X )− Ê (Y |Z = Z1,X )

Ê (D|Z = Z0,X )− Ê (D|Z = Z1,X )

=
Ê (Y |Z = Z0,X )− Ê (Y |Z = Z1,X )

P̂r(D = 1|Z = Z0,X )− P̂r(D = 1|Z = Z1,X )
.

The denominator is the difference in the probability of participating
in the program under the two different values of the instrument.
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The Wald estimator

As noted in Heckman (1992), α̂∗IV (X ) recovers the average impact
of treatment on the treated (the TT parameter) only under one of
two alternative assumptions on the error term (in addition to the
assumption E (U0|X ,Z ) = E (U0|X )):

Case I: U1 = U0

or

Case II: U1 6= U0 and
E (U1−U0|X ,Z ,D = 1) = E (U1−U0|X ,D = 1).
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The Wald estimator

- In Case I, the average impact of treatment on the treated (TT) is
assumed to be the same as the average treated effect (ATE).

- Under Case II, the ATE and TT parameters differ, but the
instrument does not forecast the unobservable component of the
gain from the program.
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The Wald estimator

• Either of these assumptions would give
E (ε̃|X ,Z = Z1) = E (ε̃|X ,Z = Z0).

• Note that E (D(U1−U0−E (U1−U0|X ,D = 1))|X ,Z ) = Pr(D =
1|X )E (U1−U0−E (U1−U0|X ,D = 1))|X ,Z ,D = 1),so the
required assumption is that
E (U1−U0|X ,Z ,D = 1) = E (U1−U0|X ,D = 1).

• Heckman (1992) provides some examples where the assumption
that the instrument does not help forecast the program gain can be
problematic, some of which are described below.
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Local Average Treatment Effects (LATE)

• If assumptions I or II are not satisfied, then the Wald estimator
does not recover the TT nor the ATE parameters but still has a
meaningful alternative interpretation as a Local Average Treatment
Effect (LATE) (See Imbens and Angrist, 1994).

• However, LATE is the average treatment effect for a particular
group of people - those induced by a change in the value of the
instrument from Z0 to Z1 to participate in the program.

• The usefulness of LATE depends on whether this population is of
interest.



Applications

Local Average Treatment Effects (LATE)

Some notation, following Imbens and Angrist (1994):

D0 = value of D if Z = Z0
D1 = value of D if Z = Z1

Recall that everyone has a value of Y0 and a Y1, though only one
of these is realized. Similarly, everyone has a D0 and a D1, which
represents a hypothetical participation status under different values
of the instrument.
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Local Average Treatment Effects (LATE)

The observed value of D is

D = 1(Z = Z0)D0 +1(Z = Z1)D1 = D0 +1(Z = Z1)(D1−D0).

Putting this expression for D into Y = Y0 +D(Y1−Y0) gives:

Y = Y0 +D0(Y1−Y0) +1(Z = Z1)(D1−D0)(Y1−Y0).
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LATE

We will assume that the instrument Z is independent of Y0,Y1,D0
and D1:

(Y0,Y1,D0,D1)⊥⊥Z .

It may seem odd to assume this for D0 and D1, because we are also
assuming that Z affects D. However, Z having an effect on D does
not mean that Z cannot be independent from D0 and D1. For
example, in a randomized trial, random assignment of the offer of
the program can be used as Z , but because this is random, it is not
correlated with D0 or D1, which represents what a person would
decide without the offer or with the offer.



Applications

LATE

• We also require that Z has no relationship with either Y0 or Y1.

• Even in the case where Z is generated by a randomized experiment,
this assumption could be violated.

- Example: Angrist et. al. (2002) analyze the effect of a Colombia
private school voucher program, which randomly allocated vouchers
for tuition at private school to a random fraction of eligible children.
- Program stipulated that if a child repeats he/she is no longer
eligible for the voucher, so private schools may have promoted
children who randomly received vouchers, leading to a correlation
between Z and Y1.
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LATE

We can divide the population into four types of people, depending
on their D0 and D1 values:

1. never-takers - those for whom D0 = D1 = 0

2. compliers - those for whom D0 = 0,D1 = 1

3. defiers - those for whom D0 = 1,D1 = 0

4. always-takers - those for whom D0 = D1 = 1.

When the instrument is the randomized offer of a program, defiers
are those who enter the program when it is not offered to them,
but do not enter the program when it is offered. One could think of
this behavior as being “irrational."
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LATE

LATE assumes that everyone is affected by the instrument in the
same way, essentially, that there are no defiers, which is called a
monotonicity assumption (See Imbens and Angrist, 1994).

Without defiers, these different groups are identifiable in the data:

Z0 Z1
D = 0 never taker or complier never-taker
D = 1 always-taker always-taker or complier



Applications

LATE

- In the data, some “always-takers" (those with D = 1 and Z = 0)
are clearly recognized, while others (e.g. “compliers") are always
mixed with “always-takers" or “never-takers."

- From the data, we can figure out the proportions of the data that
are compliers, always-takers and never-takers.

That is, consider people for whom Z = Z0. We observe what
percentage of these people are always-takers. Because Z is
assumed to be independent of D0 and D1, we have

Pa = Prob[D = 1|Z = 0].



Applications

LATE

By similar reasoning, get the proportion of never-takers (Pn)

Pn = Prob[D = 0|Z = 1].

Assuming no defiers, we get the proportion of compliers (Pc)

Pc = 1−Pa−Pn.
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The next step is to obtain the average treatment effect for
compliers:

1. Estimate E (Y |D = 0,Z = Z1). This is the mean of Y0 for
never-takers.

2. Estimate E (Y |D = 0,Z = Z0). This mean is a weighted average of
the mean Y0 for never-takers and compliers, with weights equal to
the the proportions of the types in the two populations (Pn and Pc).

3. From these two means, can infer the mean of Y0 for compliers:
E (Y0|D0 = 0,D1 = 1)
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4. Repeat the first three steps for always-takers and Y1. Get the mean
of Y1 for always-takers and the mean of Y1 for always-takers mixed
with compliers. Use to get E (Y1|D0 = 0,D1 = 1).

5. Take the means for compliers to get:
αLATE = E (Y1−Y0|D0 = 0,D1 = 1)
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Alternatively, as shown by Imbens and Angrist (1994), an easier
approach to getting αLATE (X ) is to use Z as an instrumental
variable for D. If we condition on X by simply dividing the data by
X cells, then this is the Wald estimator:

αLATE (X ) =
E (Y |Z = Z1,X )−E (Y |Z = Z0,X )

E (D|Z = Z1,X )−E (D|Z = Z0,X )
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In the case of a randomized control trial with imperfect compliance,
αLATE (X ) is equivalent to the intent-to-treat estimate divided by
the difference between the probability of being treated for those
assigned to the treatment group and those assigned to the control
group. If most people are compliers, than you can use a bounds

approach that uses the estimate of αLATE (X ) to obtain bounds for
an estimate of ATE . (See Wooldridge (2009)).
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Applications: example from labor economics

Angrist (1990) - evaluates the effect of serving in the Vietnam War
on future earnings, uses the draft lottery number as an instrument
for whether they participated. Never-takers = men who would not
serve in the war under any circumstances, always-takers = men
who would serve even if not assigned (e.g. career military).
Compliers serve only if drafted.

Heckman (1997) notes that the draft lottery number is not
necessary valid as an instrument for the αTT (X ) parameter. If
firms took into account lottery numbers in making hiring decisions,
then could induce correlation between the error term and the
instrument. Even in that case, the IV estimate will have a valid
interpretation as a LATE estimate.
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Applications: example from development economics

Angrist et. al. (2002) study the impacts of a voucher program in
Colombia (PACES), using both an intent-to-treat approach and an
instrumental variables approach. The program gave more than
125,000 vouchers through lottery covering a little more than half
the cost of attending a private secondary school. About 90% of the
lottery winners used the voucher.

- use the win/loss status as an instrument for scholarship receipt.
ITT estimates show that lottery winners were 10 percent more
likely to complete the 8th grade and that they scored, on average,
0.2 standard deviations higher on standardized tests three years
after the initial lottery. LATE estimates that are roughly 50 percent
higher than the ITT estimates.
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Chapter 9: Marginal Treatment Effects and Local IV

• Recent advances in the program evaluation literature have led to a
better understanding of the relationship between the TT, ATE and
LATE parameters and of new ways to estimate them.

• Heckman and Vytlacil (2005) develop a unifying theory of how the
parameters relate to one another using a new concept, called a
marginal treatment effect (MTE).
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Model

Consider the treatment effect model of the previous sections,
written in slightly more general form that does not assume additive
separability:

Y = DY1 + (1−D)Y0

Y1 = µ1(X ,U1)

Y0 = µ0(X ,U0)

D = 1 if µ0(Z )−UD ≥ 0

It is assumed that µ0(Z ) is nondegenerate conditional on X , so
that there is variation in who participates in the program holding X
constant (i.e. that there is an exclusion restriction). The error
terms are assumed to be independent of Z conditional on X .



Applications

MTE and IV

- Denote the propensity score as
P(Z ) = Pr(D = 1|Z = z) = FUD (µ0(Z ))
- Assume that there is full support (0< Pr(D = 1|Z ) < 1)
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MTE and IV

Heckman and Vytlacil (2005) show that without loss of generality,
one can assume UD distributed uniformly. To see why, suppose
that

D = 1 if ϕ(Z )− v ≥ 0

so that
Pr(v < c) = FV (c).

Because FV (·) is a monotone transformation of the random
variable v , we have

Pr(FV (v) < FV (c)) = FV (c).

Define UDi = FV (v) and note that Pr(UDi < t) = t. Thus, UDi is
uniformly distributed between 0 and 1.
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When UDi is uniformly distributed,

E (D|Z ) = Pr(D = 1|Z ) = FUD (µ0(Zi )) = µ0(Zi ).

• Let Z and Z ′ be two values of the instrument such that
Pr(D = 1|Z ) < Pr(D = 1|Z ′). The threshold crossing model of
program participation implies that some individuals who would have
chosen D = 0 with Z = Z will instead choose D = 1 when Z = Z ,′

but no individual with D = 1 when Z = Z would choose D = 0
when Z = Z ′.

• Vytlacil (2002) shows that the assumptions required to justify a
threshold crossing model are the same as the monotonocity
conditions typically assumed to justify application of LATE
estimators, proposed in Imbens and Angrist (1994).
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Parameters of interest in terms of αMTE (X )

Using this framework, we can define different parameters of
interest. Let ∆ = Y1−Y0.

(i) The average treatment effect (ATE):

αATE (X ) = E (∆|X = x)

(ii) The average effect of treatment on the treated, conditional on

a value of P(Z ),:

αTT (X ,P(Z ),D = 1) = E (∆|X = x ,P(z) = P(Z ),D = 1)
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Parameters of interest in terms of αMTE (X )

(iii) The marginal treatment effect (MTE) conditions on a value of
the unobservable:

αMTE = E (∆|X = x ,UD = u)

(iv) The local average treatment effect (LATE) parameter

αLATE (X ,P(Z ),P(Z ′)) =

E (Y |P(Z ) = P(Z ),X )−E (Y |P(Z ) = P(Z ′),X )

P(Z )−P(Z ′)
.
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MTE is a new concept. If UD = P(Z ), then the index
µ0(Zi )−UDi = 0 (by the above reasoning, µ0(Zi ) = P(Z ) when
UDi is uniformly distributed).
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How do we interpret αMTE (X ,U)?

• People with the index equal to zero have unobservables that make
them just indifferent between participating or not participating in
the program.

• People with UDi = 0 have unobservables that make then most
inclined to participate.

• People with UDi = 1 have unobservables that make them the least
inclined to participate.
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MTE and Local IV

All the parameters can be written in terms of MTE, first note that
the following statements are equivalent, because conditioning on
P(Z ) is the same as conditioning on Z :

Pr(Yj ∈ A|X = x ,Z = z ,D = 1) = Pr(Yj ∈ A|Z = z ,UD ≤ P(z))

= P(Yj ∈ A|X = x ,P(Z ) = p(z),D = 1)

Similarly,

Pr(Yj ∈ A|X = x ,Z = z ,D = 0) = Pr(Yj ∈ A|Z = z ,UD ≥ P(z))

= P(Yj ∈ A|X = x ,P(Z ) = p(z),D = 0)
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MTE and Local IV

In terms of the model, the parameters are:

αTT (x ,P(z)) = E (∆|X = x ,UD ≤ P(Z ))

αLATE (x ,z ,z ′) =
E (Y |X = x ,P(Z ) = P(z))−E (Y |X = x ,P(Z ) = P(z ′))

P(z)−P(z ′)
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MTE and Local IV

E(Y |X = x ,P(Z) = P(z)) = Pr(z)E(Y1|X = x ,P(Z) = p(z),D = 1)+

(1−P(z))E(Y0|X = x ,P(Z) = p(z),D = 0)

= P(Z)

∫ P(Z)
0 E(Y1|X = x ,UD = u)dUD

P(Z)
+ (1−P(Z))

∫ 1
P(Z) E(Y0|X = x ,UD = u)dUD

1−P(Z)

Thus, the numerator of LATE is equal to

∫ P(z)

0
E(Y1|X = x ,UD = u)dUD +

∫ 1

P(z)
E(Y0|X = x ,UD = u)dUD

−
∫ P(z ′)

0
E(Y1|X = x ,UD = u)dUD −

∫ 1

P(z ′)
E(Y0|X = x ,UD = u)dUD
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MTE and Local IV

Therefore, αLATE (z ,P(z),P(z ′)) equals

=

∫ P(z ′)
P(z) E (Y1|X = x ,UD = u)dUD −

∫ P(z ′)
P(z) E (Y0|X = x ,UD = u)dUD

P(z)−P(z ′)
= E (∆|X = x ,P(z ′)≤ UD ≤ P(z)),

which is the average treatment effect for people with UD within a
given range.

These people would not participate if Z = z ′ but do participate if
Z = z . The change in the value of the instrument changes their
participation status. This group is known as the complier group.
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Heckman and Vytlacil (2005) show that all of the the parameters of
interest can be written as an average of αMTE (X ,UD) for values of
UD lying in different intervals.

αTT (X ) =

∫ P(Z)
0 E (∆|X = x ,UD = u)dUD

P(Z )

αATE (X ) =
∫ 1

0
E (∆|X = x ,UD = u)dUD

αLATE (X ,P(Z ),P(Z ′)) =

∫ P(Z)
P(Z ′)E (∆|X = x ,UD = u)dUD

P(Z )−P(Z ′)

Knowledge of the MTE function therefore enables computation of
all of the parameters of interest.
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Estimation: MTE as a limiting form of LATE

• The αMTE function depends on a value of an unobservable.
Heckman and Vytlacil (2005) propose an estimation strategy that is
implementable when the researcher has access to a continuous
instrumental variable, Z , that enters into the participation equation
but not the outcome equation.

• The MTE parameter can be seen as a limiting form of LATE.

• Heckman and Vytlacil define a local instrumental variables
estimand as



Applications

αLIV (X ,P(Z)) =
∂E(Y |P(Z) = P(Z),X )

∂P(Z)

= lim
P(Z ′)−>P(Z)

E(Y |P(z) = P(Z),x = X )−E(Y |P(z) = P(Z ′),x = X )

P(Z)−P(Z ′)

= αMTE (X ,UD = P(Z)).



Applications

Estimation proceeds in two steps.

1. First, estimate the program participation (propensity score) model
to get P̂(Z ).

2. Then, estimate ∂E(Y |P(Z),X )
∂P(Z) nonparametrically (which can be done

by local linear regression of Y on P(Z )).
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Evaluating this function (separately by data grouped by X ) for
different values of P(Z ) traces out the αMTE (X ,UD) function.

The different estimands αTT (X ), αATE (X ), αLATE (X ) can then be
obtained by integrating under different regions of the αMTE (X ,UD)
function.
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Applications

- For a recent application to estimating returns to education using
U.S. data, see Carniero, Heckman and Vytlacil (2001).

- Doyle (2013, forthcoming in AER) - uses MTE to analyze effect
of foster care placement on outcomes related to foster children
(earnings, employment, teen motherhood, delinquency)



Applications

Doyle (2013)

Figures report the results of a local quadratic estimator evaluated at each percentile of P(z).  
5-95% confidence intervals reported, calculated using a bootstrap with 250 replications, clustered at the case manager level. Bandwidth=0.037.

Figure 3A:  Delinquency MTE 
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Figure 3B:  Teen Motherhood MTE
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Figure 3C:  Earnings MTE
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Figure 3D:  Employment MTE 
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Chapter 10: Regression Discontinuity Methods

• Goal is to evaluate causal impacts of an intervention

• Assignment to treatment is determined in part by the value of an
observed covariate lying on either side of a fixed threshold (cut-off)

• Design first introduced by Thistlewaite and Campbell (1960) to
evaluate the effect of National Merit awards on career aspirations of
award recipients.

• Analyzed by Goldberger (1972) in the context of evaluating
education interventions and Berk and Rauma (1983) in analzying
effect of an unemployment benefit program on recidivism rates.
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• Many studies implicitly rely on nonlinearities or discontinuities in the
assignment rule (Black (1996) and Angrist and Krueger (1991)).

• Since 1990’s, there has been a large number of studies in
economics and other fields applying and extending RD methods
(will discuss many examples later)

• New theoretical advances in interpretation and estimation
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Potential Outcomes Framework

• Potential outcomes associated with treated and untreated states

Yi (0),Yi (1)

• Framework laid out in Fisher (1951), Roy (1951), Quandt (1972),
Rubin (1978)

• Interest usually focuses on

Yi (1)−Yi (0)

• Let Wi = 1 if unit i exposed to treatment, else Wi = 0.

• Observed outcome

Yi = (1−Wi )Yi (0) +WiYi (1)

= Yi (0) +Wi (Yi (1)−Yi (0))



Applications

Assignment to Treatment

• Let (Xi ,Zi ) be a vector of covariates or pretreatment variables
known not to be affected by treatment (e.g. pre-test score, age)

• Assignment to treatment is determined either completely or partly
by the value of Xi being on either side of a fixed threshold.

• Yi (0) or Yi (1) may also be associated with Xi , but the dependence
is assumed to be smooth

• Discontinuities in the conditional distribution of Yi (or in its
conditional expectation) are attributed to a causal effect of
treatment.
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Two Types of Designs

• Sharp Regression Discontinuity (SRD) Design

Wi = 1{Xi ≥ c} (14)

All individuals with covariates of c or greater are assigned to
treatment.

• We can use the discontinuity in the conditional expectation of the
outcome given the covariate to uncover an average causal effect of
treatment

τSRD = limx↓cE (Yi |Xi = x)− limx↑cE (Yi |Xi = x) (15)



Applications



Applications

Two Types of Designs

• Fuzzy Regression-Discontinuity (FRD) Design

• Prob of receiving treatment need not change from 0 to 1 at the
threshold, but there there is a discontinuous jump in the probability,
so that

limx↓cE (Wi |Xi = x)− limx↑cE (Wi |Xi = x) 6= 0
or ,equivalently ,

limx↓cPr(Wi = 1|Xi = x)− limx↑cPr(Wi = 1|Xi = x) 6= 0

• Treatment effect can be obtained by the ratio

τFRD =
limx↓cE (Yi |Xi = x)− limx↑cE (Yi |Xi = x)

limx↓cE (Wi |Xi = x)− limx↑cE (Wi |Xi = x)
(16)
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Why?

Assume constant treatment effect τFRD .

Yi = Yi (0) +Wi [Yi (1)−Yi (0)]

Yi = Yi (0) +WiτFRD

limx↓cE (Yi |Xi = x) =

limx↓cE (Yi (0)|Xi = x) + limx↓cE (Wi |Xi = x)τFRD

limx↑cE (Yi |Xi = x) =

limx↓cE (Yi (0)|Xi = x) + limx↑cE (Wi |Xi = x)τFRD
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Take the difference, use the fact that E (Yi (0)|Xi = x) is continuous
at Xi = c and solve for τFRD .

limx↓cE (Yi |Xi = x)− limx↑cE (Yi |Xi = x) =

limx↓cE (Wi |Xi = x)− limx↑cE (Wi |Xi = x)τFRD

τFRD =
limx↓cE (Yi |Xi = x)− limx↑cE (Yi |Xi = x)

limx↓cE (Wi |Xi = x)− limx↑cE (Wi |Xi = x)



Applications
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Interpretation of FRD when treatment response is
heterogeneous

• Assume that treatment effect varies by unit τFRD random

• Let Wi (x) be the potential treatment status given cut-off point x ,
for x in a neighborhood of c .

• Wi (x) = 1 if unit i would take treatment if cut-off equals x

• Assume monotonicity: Wi (x) is nonincreasing in x at x = c
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Define compliance status

• Compliers: have

limx↓XiWi (Xi ) = 0, limx↑XiWi (Xi ) = 1, (17)

would get treatment if cut-off Xi or below, would not get treatment
otherwise

• Nevertakers: do not get treatment either way

limx↓XiWi (Xi ) = 0, limx↑XiWi (Xi ) = 0 (18)

• Always takers: get treatment either way

limx↓XiWi (Xi ) = 1, limx↑XiWi (Xi ) = 1 (19)
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For example, consider a program that assigns children with a
pre-test score below a threshold to some remedial intervention (e.g.
a summer reading program).

• Compliers are children who participate in the program only if their
test score is below the threshold and not otherwise. They comply
with their assigned treatment status.

• Always-takers are children who manage to receive the intervention
regardless (e.g. parents request that they attend the program)

• Never-takers are children who do not attend the program even if
assigned to it.
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Interpretation of τFRD

In that case, τFRD gives the average treatment effect for compliers.
(shown in Hahn, Todd and Van der Klaauw, 2001, building on
insights of Angrist and Imbens, 1994, about LATE estimators).
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Another example of FRD Design
• Van Der Klaauw (2002)

• Studies effect of financial aid on college admissions

• Association is ambiguous. More generous financial aid offers make
students more likely to attend, but those students are also likely to
have more generous offers from other places.

• xi - numerical score assigned to college application based on the
objective part of the application (SAT scores, grades)

Gi = 1 if 0≤ Xi < c1
Gi = 2 if c1 ≤ Xi < c2

...
Gi = L if cL−1 ≤ Xi

• Fuzzy design - numerical score not the only factor. essays, rec
letters also important.
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Comparison of RD Approach with a Matching Approach

• Matching assumes

Y (0),Y (1) ⊥⊥ W |X (21)

• In that case, treatment effect can be obtained by comparing people
with same x values who did and did not receive treatment

E (Y (1)−Y (0)|X = x) = E (Y |W = 1,X = c)−E (Y |W = 0,X = c)

• This approach would not exploit the jump in the probability of
assignment at the discontinuity point

• It could not be implemented with a sharp design, where there is no
overlap.

• Treated units with xi = c include both compliers and alwaystakers.

• Unconfoundedness is based on units being comparable if covariates
are similar.
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External and Internal Validity of RD Designs

• When treatment response is heterogeneous, RD approach provides
estimates for subpopulation with xi=c.

• If FRD and treatment effect heterogeneous, then effect is further
restricted to the effect on compliers only (and compliers cannnot be
identified in the data)

• The RD design has high internal validity (valid with the population
studied), but potentially limited external validity (limited
application to outside populations)
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Estimation

• For sharp design, need estimators of two limits

τSRD = limx↓cE (Yi |Xi = x)− limx↑cE (Yi |Xi = x) (23)

• Could estimate each limit by kernel regression

µ̂l (x) =
Σxi<cYiK ( xi−x

h )

Σxi<cK ( xi−x
h )

(24)

µ̂r (x) =
Σxi≥cYiK ( xi−x

h )

Σxi≥cK ( xi−x
h )

(25)
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With rectangular (uniform) kernel

• K (u) = 1/2 for −1≤ u ≤ 1, = 0 elsewhere

τSRD =
Σn

i=1Yi1(c ≤ Xi ≤ c +h)

Σn
i=11(c ≤ Xi ≤ c +h)

−
Σn

i=1Yi1(c−h ≤ Xi < c)

Σn
i=11(c−h ≤ Xi < c)

(26)

• Simple kernel regression suffers from boundary bias problem - slower
rate of convergence at boundary points than in interior points.
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Boundary bias

plimµ̂r (c) =

∫ c+h
c µ(x)f (x)dx∫ c+h

c f (x)dx
= µr(c) + limx↓c

∂

∂x
µ(x)

h
2

+O(h2)

• bias is linear in the bandwidth, h.

• At interior points, bias is usually of order h2. Convergence of bias
to 0 is slower at boundary points.
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Recommended alternative: Local linear regression

• Fan and Gijbels (1996) discuss local linear regression methods that
have the same order of convergence at boundary points as in
interior points.

• These methods fit a regression to observations within a distance h
on either side of the discontinuity point.

minαr ,βr

n

∑
i=1,xi≥c

(Yi −αr −βr (Xi − c))2K (
Xi − c

h
) (27)

• α̂r provides an estimator of µr at the point x=c

• Obtain α̂l similarly and then obtain treatment effect as α̂r − α̂l .

• Local linear regression has same variance as kernel regression, but
faster rate of convergence of bias at boundary points.(Fan and
Gijbels, 1996).
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Estimation under the FRD design

Again, we need to estimate the expected value of the outcome on
both sides of the discontinuity point

minα
y
r ,β

y
r

n

∑
i=1,xi≥c

(Yi −αr −βr (Xi − c))2K (
Xi − c

h
) (28)

minα
y
l ,β

y
l

n

∑
i=1,xi<c

(Yi −αl −βl (Xi − c))2K (
Xi − c

h
) (29)
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Estimation under the FRD design cont...

• In addition, estimate the expected value of the treatment indicator
on both sides of the discontinuity point

minαw
r ,βw

r

n

∑
i=1,xi≥c

(Wi −αr −βr (Xi − c))2K (
Xi − c

h
) (30)

minαw
l ,βw

l

n

∑
i=1,xi<c

(Wi −αl −βl (Xi − c))2K (
Xi − c

h
) (31)

• The RD treatment effect estimate under the FRD is

τ̂ =
α̂

y
r − α̂

y
l

α̂w
r − α̂w

l
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Smoothing parameter selection

• For a given bandwidth,h, let the regression function at x be

µ̂(x) = α̂l (x) if x < c
= α̂r (x) if x ≥ c

• Define the cross-validation criterion as

CVy (h) =
1
N

n

∑
i=1

(Yi − µ̂−i (Xi ))2

• where µ̂−i (Xi ) is the so-called leave-one-out estimator, that leaves
out the ith datapoint in calculating the estimate at Xi .
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Smoothing parameter selection

• Choose h to minimize CVy (h) over a grid of possible bandwidths.

hopt
CV = argminhCVy (h)

• Typically, get a cross-validation "check function"

• It is also possible to choose the bandwidth locally, focussing only on
data points within close distance to the cut-off point c .

• Can choose a separate bandwidth for estimating the regression
function of Wi given Xi
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Assessing the variance of the estimator

• Can obtain standard errors using bootstrap methods

• Bootstrap methods are useful when it is cumbersome to obtain
asymptotic standard errors.

(i) Generate B bootstrap subsamples from the original data (can
use 100% sampling with replacement.)
(ii) Estimate treatment effect within each bootstrap sample
(iii) The estimate of the treatment effect is based on the original
data. The empirical variation across bootstrap estimates provides
an estimator of the variance.
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ˆvar( ˆµ(xi )) =
1
B

B

∑
i=1

(µ̂b(xi )− ¯̂µb(xi ))2
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Should analysis condition on other covariates?

• There may be other covariates (Z ) that are observed and that
determine outcomes

• Presence of these covariates rarely changes the identification
strategy. The distribution of outcomes is usually continuous in
other covariates.

• Do not necessarily need to condition on other covariates.

• In practice, conditioning on Z may be helpful if we use observations
on X that are not too close to c .
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Graphical analysis
• Integral part of RD analysis

• RD -> treatment impact measured by a discontinuity in expected
value of outcome at a particular point

• Inspect histogram estimate of avg value of the outcome around the
threshold - is there evidence of a jump?

• Calculate averages that are not smoothed over the cut-off

• Also verify that there is a jump in the probability of treatment at
the cut-off point

• It is also useful to inspect graphs for covariates and density of the
“forcing" variable to assess credibility

• Plot average values of other covariates

• Plot the density of the forcing variable to look for evidence of
manipulation (e.g. individuals know the threshold and can manipulate
their value of xi , for example, by retaking a test.)
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RD Examples: Card, D., Dobkin, C.,(2008,AER)
Effect of health insurance coverage on health care utilization

• Medicare eligibility at age 65 leads to sharp changes in the health
insurance coverage of the U.S. population and health care
utilization increases after age 65.

• Paper compares health-related outcomes (such as different kinds of
doctor visits and proceures) among people just before and just after
65, also examining results disaggregated according to group
characteristics.

• It follows DiNardo and Lee (2004) and assumes the age profiles in
equations (1), (2a) and (2b) are continuous polynomials with
potential discontinuities in the derivatives at age 65.

• They also fit many of the models using local linear regression (as
suggested by Hahn, Todd and van der Klaauw, 2001) and find
results to be relatively robust.
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RD Examples: Lalive (2007, J of Econometrics)
Examines whether extended benefits affect unemployment duration

• Analyzes effect of a targeted program that extends the max
duration of unemployment benefits from 30 weeks to 209 weeks in
Austria for individuals 50 and older living in certain geographic
regions.

• There are sharp discontinuities in treatment assignment at age 50
and at the geographical border between eligible and ineligible
regions.

• Uses social security data and data on unemployed.

• Two identification strategies: (i) compare individuals around the
age cut-off, (ii) compare individuals across geographic borders

• Finds that job search is prolonged by 0.09 weeks per additional
week of benefits for women and unemployment duration increase by
0.32 weeks per additional week of benefits for women.



Applications

RD Examples: Lalive (2007, J of Econometrics)
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RD Examples: Lalive (2007, J of Econometrics)
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RD Examples: Lalive (2007, J of Econometrics)
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RD Examples: Lalive (2007, J of Econometrics)
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RD Examples: Lalive (2007, J of Econometrics)
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RD Examples: Jacob, B.A., Lefgren, L., (2004, Restat)
Effect of summer school and grade retention on student performance

• Analyzes the effectiveness of remedial education programs on test
scores.

• In 1996, Chicago public schools instituted an accountability policy
that tied summer school and grade retention to performance on
standardized tests.

• Finds that summer school increased academic achievement in
reading and mathematics and that these positive effects remain in
the two years following the summer school program.

• Grade retention did not have negative consequences for third
graders and increased short run performance.

• Retention had no impact on math performance of older students
(sixth graders) and a negative impact on reading.
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RD Examples: Jacob, B.A., Lefgren, L., (2004, Restat)
Effect of summer school and grade retention on student performance

• Uses administrative data from the Chicago Public School System

• 40% of third-graders and 30% of sixth graders failed to meet
promotional standards.

• 3% of students who scored below the cut-off received waivers from
summer school, so design was fuzzy.
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Examples: Hahn, J., Todd, P., Van Der Klaauw, W., (1999).
Evaluating the effect of an anti discrimination law

• Assesses the impact of an anti-discrimination law on minority hiring
that mandates that firms with 15 or more employees make reports
to the government about the ethnic/racial/gender composition of
their work.

• Firms with at least 15 employees are covered by Title VII of the
Civil Rights Act (1972 Amendment extended coverage from firms
with 25 or more to firms with 15 or more employees).

• Uses a sharp RD design.

• Finds that law led to modest increase in minority hiring.
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RD Examples
Effect of class size on scholastic achievement

Angrist, J.D., Lavy, V. (1999, QJE)

• Analyzes the effect of class size on student test scores using data
from Israel and exploiting a discontinuity created by , which states
that a class be added whenever average class size reaches 40
students.

• Finds that reducing class size induces a significant and substantial
increase in test scores for fourth and fifth graders, although not for
third graders.
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RD Examples
Estimating the value parents place on school quality

Black, S., (1999,QJE)

• Uses house prices to infer the value parents place on school quality.

• Compares, within school districts, the prices of houses located on
attendance district boundaries - houses that differ only by the
elementary school the child attends.

• This comparison removes the variation in neighborhoods, taxes, and
school spending.

• Finds that parents are willing to pay 2.5 percent more for a 5
percent increase in test scores.

• Possible that parents on either side are different, so that estimate is
a lower bound on valuation.
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RD Examples:
Chay, K., McEwan, P., Urquiola, M., (AER, 2005)

Effects of a school incentive program on test score performance

• Evaluates the effect of a school-incentive program in Chile (the
Chile-900 program) in which resources were allocated based on
cutoffs in schools’ mean test scores.

• Shows how a regression discontinuity design that exploits the
discrete nature of the selection rule can be used to evaluate the
program.

• Finds that the P-900 program had significant but modest size
effects on test score gains.
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RD Examples: DiNardo, J., Lee, D.S., 2004, QJE)
Effect of unionization on labor market outcomes

• Using US establishment-level data on establishments that faced
union organizing drives during 1984-1999, this paper uses a sharp
RD design to estimate the impact of unionization on business
survival, employment, output, productivity, and wages.

• Compares outcomes for employers where unions won the election by
a close margin with those where the unions lost by a close margin
(e.g. 49% compared to 51%).

• Impacts on all outcomes are small and impacts on wages are close
to zero. Concludes that mandates for employers to bargain with
unions had little effect.
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RD Examples: Card, D., Mas, A., Rothstein, J., (2006, QJE)
Tests for discontinuities in the dynamics of neighborhood racial composition

• Theoretical models of social interactions (Schelling (1971)) predict
tipping behavior in neighborhoods - e.g. once the minority share in
a neighborhood exceeds a so-called tipping point,all the whites
leave.

• This paper uses regression discontinuity methods and Census tract
data from 1970 through 2000 to test for discontinuities in the
dynamics of neighborhood racial composition.

• Finds evidence for tipping-like behavior in most cities, with a
distribution of tipping points ranging from 5% to 20% minority
share, but evidence for tipping points in on other outcomes, like
house prices.
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RD Examples: Lee (2007, J of Econometrics)
Effect of incumbancy advantage

• Uses data on US Congressional election returns from 1946 to 1998.

• Analyzes the effect of the incumbancy advantage at the level of the
party at the district level, without regard to the identify of the
nominee for the party.

• For example, analyzes the prob of winning the election in t+1 given
that democrats won the election in t, coming districts where they
won by a close margin to districts where they lost by a close margin.

• Paper recommends checking the density of observables to test for
systematic selection around the cut-off point.

• Finds that democrats who just barely win the election are much
more likely to run for office and succeed in the next election
compared to democrats who barely lose, which implies a large
incumbency advantage. (also see Moretti and Butler, 2004, QJE)
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Recommended RD Practices
(Imbens and Limieux, 2007)

Sharp RD Designs
1. Graph the data by computing the average value of the outcome
variable over a set of bins. The bin width should be large enough to
have a sufficient amount of precision so that the plots looks smooth
on either side of the cut-off value, but also small enough to be able
to see the jump around the cut-off value.

2. Estimate the treatment effect by running linear regressions on
both sides of the cut-off points using only data within a bin width h
of the cut-off point. These are kernel regressions using a
rectangular kernel.
-standard errors can be computed using standard least squares
methods (using robust standard errors).
-optimal bandwidth can be chosen using cross-validation
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3. Examine robustness of the results by
(a) looking at possible jumps in the value of other covariates
around the cut-off point.
(b) using various values of the bandwidth, with and without
controlling for other covariates in the regression.

4. The performance of the estimator can be improved by using
nonparametric local linear regression and computing the standard
errors either using a plug-in approach or by bootstrapping.
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Fuzzy Regression Discontinuity Designs
1. Graph the average outcomes over a set of bins as in the case of
SRD, but also graph the probability of treatment.

2. Estimate the treatment effect using TSLS applied only to data
within h of the cut-off (above and below), which is numerically
equivalent to computing the ratio in the estimate of the jump (at
the cutoff point) in the outcome variable over the jump in the
treatment variable.

3. Standard errors can be computed using robust TSLS estimates
or using a plug-in estimator.



Applications

4. Robustness can be examined using similar approaches as in SRD.

5. The performance of the estimator can again be improved by
using nonparametric local linear regression instead and computing
the standard errors either using a plug-in approach or by
bootstrapping.
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