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Applications

Chapter 1: The evaluation problem



Questions of interest in program evaluations

Do program participants benefit from the program?
Who chooses to participate in programs?

What would be the program effects if extended to
nonparticipants?

Do people differ in how they benefit from the program?
Do the benefits exceed the costs?

What is the social return from the program?

Would an alternative program design achieve greater impact at
the same cost?



Goals

to describe different estimators and their identifying
assumptions

to discuss the behavioral implications of these assumptions

to illustrate how different kinds of estimators are related to
one another

to summarize the data requirements of different methods

to provide examples of how the evaluation methods have been
applied in the development, labor and health economics
literatures.



Alternative approaches

Randomization
Regression estimators
Matching

Control function methods

IV methods, MTE, LATE

Regression-Discontinuity



The Evaluation Problem

Let D =1 for persons who receive the intervention and D =0
for persons who do not receive it.

Each person has associated a (Y, Y1) pair that represents the
outcomes that would be realized in the the untreated and
treated states.

At most one of the two potential outcomes is observed.

The observed outcome is
Y =DY1+(1—D)Yo.
The treatment effect is
A=Y—Y,.

Inferring gains from treatment therefore requires solving a
missing data problem.



Parameters of interest

e Distinguish between
e direct effects: effects of program on participants
e indirect effects: effects of program on people who are not
directly participating
e Example: job voucher program that gives employers a subsidy
to hire workers may help program participants but may put
nonparticipants at a disadvantage.

e Most of literature aims to estimate direct effects.



Parameters of interest

(a) the proportion of program participants that
benefit from the program

Pr(Y1 > YO‘D = 1) = PI’(A > O‘D: ].)

(b) the proportion of the total population benefitting
from the program:

Pr(A >0/D=1)Pr(D=1)

(c) quantiles of the impact distribution (such as the
median), where q is the selected quantile

inf{A: F(AID=1)> q)

(d) the distribution of gains for individuals with some
characteristics Xg

F(AID=1,X=Xp),



Two key parameters

Much of the program evaluation literature develops methods for
estimating two key parameters of interest:?

(e) the average gain from the program for persons
with characteristics X

E(Yi— Yo|X) = E(A|X).

(f) the average gain from the program for program
participants with characteristics X :

E(Yi— Yo|D=1,X)= E(A|D =1, X).

1See, e.g., Rosenbaum and Rubin (1985), Heckman and Robb (1985), or
Heckman, Lalonde and Smith (1999).



Distinction between ATE and TT

Suppose the outcomes in the treated and untreated states can be
written as:

Yi. = @o(X)+Us
Yo = QD()(X)—I—U().

The observed outcome Y = DY;+(1—D)Yj is:
Y = @o(X) + D(@1(X) = ¢o(X)) + {Uo + D(U1 — o) }-

Assume E(Up|X) = E(U1|X) =0. The gain to an individual from
participating in the program is:

A = @1(X) = @o(X)) + (U1 — lo).



What is known when people enter program?

e Individuals may or may not know their values of U; and U at
the time of deciding whether to participate in a program.

e If people self-select into the program based on their
anticipated gains, then we would expect that E(Uy|X,D) # 0
and E(UﬂX,D) # 0.

e If the gain from the program depends on U; and Uy and people
know future values of U; and U, or can forecast the values,
then we would expect people to make use of this information
when they decide whether to select into a program.



ATE and TT in terms of model

In the notation of the above model for outcomes:

oate(X) = E(AIX) = @u(X) —@o(X) + E(U1|X) — E(Uo| X)
= @1(X) — @o(X).

The average impact of treatment on the treated (TT) is
arr(X) = E(A|X) = @1(X) — ¢o(X) + E(U1 — Up| X, D =1).

As discussed in Heckman (2000), the average effect of treatment
on the treated icombines the “structural parameters” (the
parameters of the functions @g(X) and ¢1(X)) with means of the
unobservables.



Also, UT

For completeness, define the average impact of treatment on the
untreated (UT) as

oyt (X) = E(A[X) = @1(X) — ¢o(X) + E(U1 — Uo| X, D = 0),

Parameter may be of interest if there are plans for expanding the
program.

The relationship between TT, ATE and UT is:

OCATE(X) = PI’(D = 1‘X)OCTT(X) -+ PF(D = O‘X)(XUT(X)



Three types of assumptions

As discussed in Heckman, Lalonde and Smith (1999), there are
three types of assumptions that can be made.
In order of increasing generality, they are:

e (A.1) conditional on X, the program effect is the same for
everyone (U1 = Up)

e (A.2) conditional on X, the program effect varies across
individuals but U; — Uy does not help predict program
participation

e (A.3) conditional on X, the program effect varies across

individuals and U; — Uy does predict who participates in the
program.

ATE=TT under assumptions A.1 and A.2.

We will consider ways of estimating the ar1(X) and aate(X)
parameters of interest under these three different sets of
assumptions.



When does bias arise?

Consider the model
Y = @o(X) + D(@1(X) — 9o(X)) +{Uo+ D(U1 — Uo)}.

In terms of the two parameters of interest, the model can be
written as:

Y = @o(X)+ Doaate(X)+{Up+ D(U;s — Up)} (1)

Y:(po(X)—I—DOCTT(X)—I—{UQ—I—D[Ul—Uo—E(Ul—UQ‘X,D:].)]}.



When does bias arise?

Suppose the X are discrete.
We estimate an ordinary least squares regression:

Y =aX+ b, XD+ v.

This model is known as the common effect model.
A special case of the model assumes that the coefficient on D is

constant across X :
Y =aX+bD +v.



When does bias arise?

Bias for the aa7e(X) parameter arises if the mean of the error
term does not have conditional mean zero, i.e.

E(Uo + D(Us — Up)|X. D)) 0.
Under assumption A.1 and A.2, potential bias arises only from

E(Uo|X, D) # 0.

Under A.3, there is also the potential for bias from
E(U; — U|D,X) #0.

For estimating the o7 (X) parameter, under A.1-A.3, bias
arises if E(Uy|X,D) # 0.



Chapter 2: Randomization

Suppose select the comparison group using a randomization device
(e.g. a lottery).
Main benefits

e Ensures that the treatment and control groups have the same
distribution of observables and of unobservables.

e Ensures that the control group also satisfies program eligibility
criteria



Potential problems in social experiments

Randomization bias or so-called Hawthorne effects:
randomization may change the way a program operates.

Contamination or cross-over effects: occurs when some
controls receive the treatment and/or some of the people
assigned to treatment do not receive it.

Dropout: when some of the treatment group drop out before
completing the program.

Attrition: Both controls and treatments may not respond to
surveys and response patterns may differ by treatment status.

pioneer effects: can occur if the program has not been in
operation for long.(See Behrman and King, 2008, 2009). For
example, program implementers could be less experienced or
especially motivated.



Internal verses external validity

e |f the experimental protocol was followed and the problems
described earlier are not that significant, then the experiment
is said to be internally valid.

e An experiment has external validity it the sample participating
in the experiment is representative of the population of
Interest.

e If the sample in the experiment is not similar, for example, is
younger, poorer or more likely to be female, then statistical
adjustment can sometimes be used to extrapolate from the
experimental results to the population of interest.



For a recent critical view on the value of randomized control trials
in economic development studies, see Deaton (2009).



When to randomize?

At what stage should randomization be applied? There are two
major approaches:

e Randomization after acceptance into the program

e Randomization of eligibility



Randomization after application

Let R =1 if randomized into the program (treatment group).
Let R =0 if randomized out (control group).

Let Y; and Y7" denote the outcomes observed under the
experiment.

Let D* =1 denote someone who applies to the program and is
subject to the randomization. People with D* =1 are would-be
participants, in the sense that they would participate in the
program if offered to them.

No randomization bias and random assignment implies:

E(Y|X,D*=1,R=1)= E(Y4|X,D=1)
E(YZ|X,D* =1,R=0)= E(Yo|X,D=1)



Randomization after application

Thus, the experiment gives the average effect of treatment for
individuals who apply to the program.
TT(X)=E(Y1— Yo|X,D=1).

The experiment also gives the marginal distributions of Y7 and Yj

It does not give the joint distribution
F(Yo, Yl‘X, D = 1).



Randomization of eligibility

Alternative approach is to randomize on eligibility.

A subset of people may be told randomly that they are eligible

for a program and then they can choose whether to participate
or not.

Let e =1 denote that a person is eligible for a program and
e = 0 if not eligible.

People with D =1 and e = 0 are people who would have liked

to participate but they were randomly not eligible, so we only
observe Yy for them.



Randomization of eligibility

We observe:

E(Y|X,e=1)=Pr(D=1|x,e=1)E(Yi|X,e=1,D=1)+
Pr(D =0|x,e = 1)E(Yo|X,e =1,D = 0)
E(Y|X,e=0)=Pr(D=1|x,e =0)E(Yp|X,e=0,D=1)+
Pr(D =0|x,e = 1)E(Yy|X,e =0,D = 0)

Because eligibility was randomized, we have

Pr(D=1|X,e=1)=Pr(D=1|X,e=0)
Pr(D=0|X,e=1)= Pr(D =0|X,e = 0)
E(YolX,D=1,e=1)= E(Yo|X,D =1,e = 0)
E(Yi1|X,D=1)=E(Y1|X,D=1,e = 0)



Randomization of eligibility

Thus, the difference in the previous two equations,
E(Y|X,e=1)—E(Y|X,e=0)=Pr(D=1|X,e=1)[E(Y1|X,D =
1)— E(Yo|X,D=1)].

Therefore, we obtain

E(Y|X,e=1)—E(Y|X,e=0)
Pr(D=1|X,e=1)

TT(X)=

The estimator replaces the means by their sample analogs.

When randomization is on eligibility, we can compare the means for
those randomized-in and randomized-out, dividing by the
proportion that selects into the program, given eligible.



The estimator can easily be modified to account for a fraction of
the controls getting into the program despite not being eligible
(e.g. contamination). In that case, we obtain

E(Y|X,e=1)—E(Y|X,e=0)
Pr(D=1|X,e=1)— Pr(D=1|X,e =0)

TT(X)=

where contamination implies Pr(D = 1|X,e =0) > 0. We do,
however, require that Pr(D =1|X,e=1) # Pr(D =1|X,e =0).



Experiments in the presence of drop-out

e Program dropout occurs when people assigned to the
treatment group decide not to participate.

e |f drop-out occurs early on, we can possible consider these
persons to be untreated.

e Can treat program dropout in the same way as randomization
of eligibility. The drop-outs were eligible (e = 1) for the
program but decided not to participate (D = 0).



Intent-to-treat

e Alternatively, could define treatment as the “offer of
treatment." All people offered the treatment are participants,
regardless of whether they later attend the program.

e The relationship between the ITT program effect and the TT
effect is

ITT(X)=TT(X)Pr(D=1|e=1,X)+0Pr(D =0le=1,X)

The second term implies that ITT penalizes a program for having a
low participation rate by giving an impact of zero to a fraction of
the group assigned to the program.



Drop-out

Program drop-out after partial participation is a more difficult
problem. This happens when individuals attend the program for

awhile and then drop-out before completing it.
In that case, we need to either decide at what point they become

"treated" or else explicitly model the treatment outcome as a
function of a treatment dose level.



Randomization Methods: Blocking

If you are designing a randomized experiment, one option is to
simply randomize. With a large sample, the distributions of
the observables and unobservables within the R=1and R=0
groups will be similar.

Another option is to first divide the sample according the some
observable X characteristics and then randomize within X
subsets. This option is called blocking.

The main advantage of blocking is that it ensures that the X
distribution is the same even in sample samples, so it is a
particularly useful method when the size of the sample being
randomized is modest.

Blocking eliminates the need to control for those X variables
ex post, in a regression, and therefore can save on degrees of
freedom and provide greater precision in estimating the
treatment effect.



Place-based experiments

Randomization can be done at an individual level or it may be
preferable to do it at the level of a larger unit, such as a family
or a school or a village.

These are called place-based randomized experiments.

One might choose a place-based design over an individual level
design if you expect that there may be spillover effects from
some individuals in the treatment to others, for examples, from
some students to others within a school

Also, sometimes it is much earlier to implement an
intervention at the level of a higher unit, such as a school

The main cost of doing a place-based randomized experiment
instead of a individual level experiment is loss of power,
because there are fewer individual units being randomized.



Randomized roll-out designs

e Sometimes, a program is being gradually implemented and one
can use randomization to choose where it gets implemented
first, even though eventually it may be implemented
everywhere.

e The areas that are initially left out can temporarily serve as a
control group.

e Under such randomized roll-out designs, it is important not to
inform those units who are were initially left out that they will
eventually be included in the program, because the expectation
of receiving the program in the future could affect their
behavior in the present.



Chapter 3: Simple regression estimators

e Nonexperimental estimators of program impacts use two types
of data to impute missing Y outcomes for program
participants:

e data on participants at a point in time prior to entering the
program
e data on nonparticipants.

e Three widely used methods for estimating E(A|X,D = 1),
(TT)

e (a) before-after estimator

o (b) cross-section estimator
e (c) difference-in-difference estimator

e Extensions to ATE parameter straightforward.



Notation

e Denote the outcome measures by Y7 and Yy, where |
denotes the individual and t the time period of observation,

Yie = 01(Xio)+ Urie (2)
Yoir = @o(Xit)+ Uoit.

e Ui+ and Up;; distributed independently across persons and
satisfy E(U1jt|Xit) =0 and E(Upit| Xiz) = 0.

e X;: represents conditioning variables that may either be fixed
or time-varying (such as gender or age), but whose
distributions are assumed to be unaffected by whether an
individual participates in the program.



Write observed outcome at time t as
Yit = @o(Xit) + Dirat™ (Xit) + Upit, (3)

D;: denotes being a program participant and

o (Xit) = 01(Xit) — @o(Xit) + Urjt — Upjt is the treatment
impact for an individual.

Prior to the program intervention, we observe

Yoir = (PO(Xit) + Uyj+ for everyone.

After the intervention we observe Y1 = @1(Xjt) + Upjr for
those who received it (for whom D;; =1, for t > ty, the time

of the intervention) and Yg;: = @o(Xjt) + Upjr for those who
did not receive it (for whom Dj; =0 in all time periods).



e This model is a random coefficient model, because the
treatment impact can vary across persons.

e Assuming that Up;; = Uijr = Ujs, yields the fixed coefficient or
common effect model.

e The TT parameter is:
ot (Xit) = E(a”(Xit)|Dit = 1, Djp = 0, Xi¢),

where the conditioning on D;; =1, D, = 0 denotes that the
person was not in the program at time t’ but did participate by
time t’.



Before-after estimators

e Uses pre-program data to impute missing Yy: for program
participants.

e Let t/ and t denote two time periods, one before and one after
the program intervention.

e The before-after estimator is the least squares solution
obtained by

Yii— Y = @o(Xit) — @o(Xip) + o771 (Xit) + €it
where € = [Uiir — Upit — E(Urit — Upit| Dir = 1, Djy = 0, Xit)]
+ Uit — Upir



Before-after estimators

Consistency of the estimator for o7 (Xj:) requires:

E(Sit‘Dit =1,Dyp = Oaxit) =0.

The term in brackets has conditional mean zero by construction, so
the key assumption required to justify application of this estimator
IS:

E(UOit — UOit"Dit — 17 Dit’ — vait) =0.



Before-after estimators

e A special case where this assumption would be satisfied is if
Upi+ can be decomposed into a fixed effect error structure:
Uojt = fi + vir, where f; does not vary over time and vj; is a iid
random error that satisfies E(vj: — v;#|D; = 1,D;» = 0, X)) = 0.

e This assumption allows selection into the program to be based
on f; (i.e. Dj is allowed to be correlated with £;), so the
estimation strategy admits to person-specific permanent
unobservables that may affecting the program participation
decision.



Before after estimators

One drawback of a before-after estimation strategy is that
identification breaks down in the presence of time-specific
iIntercepts, making it impossible to separate effects of the
program from other general time effects on outcomes.

Such a common time effect may arise, e.g., from life-cycle
wage growth over time or from time-varying shocks to the
economy.

Before-after estimates can also be sensitive to the choice of
time periods used to construct the estimator.

Minimal data requirements - two periods of cross-section data.



Ashenfelter’'s dip

Many studies of employment and training programs in the U.S.
and in other countries note that earnings and employment of
training program participants dip down in the time period just
prior to entering the program.

The pattern can arise from serially correlated transitory
downward shocks to earnings that may have been the impetus
for the person applying to the training program.

The dip pattern can also result from program eligibility criteria
imposed that tend to select out the most disadvantaged
persons for participation.

A before-after estimation strategy that includes the
preprogram "dip" period typically gives an upward biased
estimate of the program effect



Cross-section Estimators

e Uses data on a comparison group of nonparticipants to impute
counterfactual outcomes for program participants.

e Requires only post-program data on D;; =1 and D;; =0
persons.

e The least squares solution to

Yie = @o(Xit)+ Dirarr(Xit) + €it,
Uoit + Dit[(U1it — Uoir) — E(Upir — U1jt| Dir = 1, Xit )]

where &;;

estimated on D;; =1 and D;; = 0 persons observed at time t.



Cross-section Estimators

o Consistency requires that E(&;|Djt, Xit) = 0..
e Same as assuming that E(Upjt|Dit, Xit) = 0.

e Rules out the possibility that people select into the program
based on expectations about their Up;, a strong assumption.



Difference-in-differences estimators

Commonly used in evaluation work.

Measures the impact of the program intervention by the
difference in the before-after change in outcomes between
participants and nonparticipants.

Define an indicator /P that equals 1 for participants (for whom
Dy =0 and Dj = 1), and zero otherwise.

The DID estimator is the least squares solution for o7+ (Xit) in

Yii— Y = @o(Xit)—@o(Xip)+ 1P o077 (Xit) + &t
g+ = Di|Urit — Upit — E(Usjt — Upit| Dit = 1, Djpy = 0, Xt )]
+Upit — Upjy' -

Identical to before-after regression, except uses both
participant and nonparticipant data.



Difference-in-differences estimators

e Main advantage: allows for time-specific intercepts that are
common across groups, included in @p(Xj;). and separately
identified from nonparticipant observations.

e The estimator is consistent if E(€&;¢|Djt, Xj:) = 0, which would
be satisfied under a fixed effect error structure.

e Data requirements are either longitudinal or repeated
cross-section data on both participants and nonparticipants.



Difference-in-differences estimators

Alternatively, DID can be implemented using a regression

»/I't — (PO(Xit) —+ /iDy+ D,-tOC?T(X,-t) -+ éit for [ = tl, ey L.
Er = Uoit + Dit[Urir — Upjr — E(U1it — Upit| Dir = 1, Xit)]



Difference-in-differences estimators

e Allow for unobservable determinants of program participation
decisions and outcomes.

e But, fixed effect error structure only incorporates the potential
influence of time-invariant unobservables.



Applications of DID estimators

A study of the effect of school construction on education, and
of education on wages, in Indonesia (Duflo, 2001)

Evaluation of efficient use of inputs within households in
Burkino Faso (Udry, 1996)

Evaluation of impact of school meals on child nutrition in the
Philippines (Jacoby, 2002)

Impact of flip charts on student academic performance in
Kenya (Glewwe et al. 2004)



Within estimator applications: Duflo (2001)

e Uses a DID estimator to evaluate the effects of a school
construction program in Indonesia on education, and the effect
of education (years of schooling) on wages.

e In 1973, the Indonesian government launched a major school
construction program, the Sekolah Dasar INPRES program.
From 1973-1974 and 1978-1979, more than 61,000 primary
schools were constructed: an average of two schools per 1,000
children aged 5 to 14 in 1971.

e Enrollment rates among children aged 7 to 12 increased from
69 percent in 1973 to 83 percent by 1978.



Duflo(2001)

Duflo exploited this policy change to estimate the impacts of
this school construction program on education and earnings.

Major estimation issue is that the placement of schools was
not random. This is due to the fact that the construction of
new schools was, in part, locally financed: more schools were
built in more affluent communities.

Exposure to the school construction program varied by region
and vyear.

Compares outcomes of older and younger individuals in regions
where the school construction program was more and less
active.



Duflo (2001): Results

The following table illustrates her identification strategy.

TABLE 3—MEANS OF EpucATION AND LOG(WAGE) BY COHORT AND LEVEL OF PROGRAM CELLS

Years of education

Level of program in region of birth

Log(wages)

Level of program in region of birth

High Low Difference High Low Difference
(1) (2) (3) (4) (5) (6)
Panel A: Experiment of Interest
Aged 2 to 6in 1974 8.49 9.76 -1.27 6.61 6.73 -0.12
(0.043) (0.037) (0.057) (0.0078) (0.0064) (0.010)
Aged 12 to 17 in 1974 8.02 9.40 -1.39 6.87 7.02 -0.15
(0.053) (0.042) (0.067) (0.0085) (0.0069) (0.011)
Difference 0.47 0.36 0.12 ~0.26 -0.29 0.026
(0.070) (0.038) (0.089) (0.011) (0.0096) (0,015)
Panel B: Control Experiment
Aged 12 10 17 in 1974 8.02 9.40 -1.39 6.87 7.02 -0.15
(0.053) (0,042) (0.067) (0.0085) (0.0069) (0.011)
Aged 18 to 24 in 1974 7.70 0.12 ~1.42 6.92 7.08 ~0.16
(0.059) (0.044) (0.072) (0.0097) (0.0076) (0.012)
Difference 0.32 (.28 0.034 0,056 0.063 0.0070
(0.080) (0.061) (0.098) (0.013) (0.010) (0.016)

Notes: The sample is made of the individuals who earn a wage. Standard errors are in parentheses.



Duflo (2001): Results

Results suggest that each new school constructed per 1,000
children was associated with:

- an increase of 0.12 to 0.19 in years of education, and

- a 1.5 to 2.7 percent increase in earnings for the first cohort fully
exposed to the program.

This implies estimates of economic returns to education ranging
from 6.8 to 10.6 percent. (Note: These estimates of economic

returns to education were obtained using instrumental variables
(IV) methods.)



Chapter 4: Within estimators

ldentify program impacts from differences in outcomes within
some unit of observation, such as within a family, a school or a
village.

Let Ypijr and Yij: denote the outcomes for individual i, from
unit j, observed at time t,.

For now, assume that Uq;; = Upjs.

Write the model for outcomes as:

Yije = 0o(Xije) + 17 v+ Dijeairr (Xje) + €3

Assume that the error term &;j;(= Upjr) can be decomposed as:

Ejjt = 0 + Vijt

where 0, represents the effects of unobservables that vary
across units but are constant for individuals within the same
unit and vjj; are iid.



Within estimators

e Taking differences between two individuals from the same unit
observed in the same time period:

Yiit — Yije = @o(Xijt) — @o(Xivje) + (IUD — /;6)3’+
(Dije = Dirje ) ot (Xije ) + (Vije — virje).

e Consistency for ar7(Xjjt) requires that

E(Vijt VI_/t’XUhXI_jt) Dijta Di’jt) = 0.



Within estimators

Assumption implies that within a particular unit, which
individual receives the treatment is random with respect to the
error term vjj;.

It Upir # Urje, it has to be assumed that which individual
receives treatment is random with respect to that individual's
idiosyncratic gain from the program.

Program may be nonrandomly targeted (e.g. at families or
villages), but within units, which individuals participated must
be unrelated to idiosyncractic program gain.

Also, assumes no spillover effects from treating one individual
on others within the same unit.

Allows treatment to be selective across units
(E(&jjt| Djjt, Xijr) # 0), because treatment selection can be
based on the unobserved heterogeneity term 6;.



Within estimators

e When the variation being exploited for identification of the
treatment effect is variation within a family, village, or school
at a single point in time, then requires a single cross-section of
data.

e If all individuals in a unit receive treatment at the same time,
then can take differences across different points in time, but
will suffer same drawbacks as before-after approach.



Applications of Within estimators

e A study of the impact of a family planning and health
counseling program on child outcomes in the Philippines
(Rosenzweig and Wolpin, 1986)

e Evaluation of efficient use of inputs within households in
Burkino Faso (Udry, 1996)

e Evaluation of impact of school meals on child nutrition in the
Philippines (Jacoby, 2002)

e Impact of flip charts on student academic performance in
Kenya (Glewwe et al. 2004)



Within estimator applications: Rosenzweig and Wolpin
(1986)

e Rosenzweig and Wolpin (1986)—assesses the impact of a family
planning and health counseling program on child outcomes in
twenty villages (barrios) in the Phillipines.

e Discusses the statistical problems created when the placement
of a program potentially depends on the outcome variable of
Interest.

e For example, family planning programs are often placed in
areas where the need is considered to be the greatest. Not
accounting for nonrandom placement would lead to the
erroneous conclusion that family planning programs cause
fertility.



Rosenzweig and Wolpin (1986): Data

- Information from surveys of 240 randomly selected households
residing in these barrios on the age, height, and weight of every
family member was collected in 1975 and 1979. Information was
also obtained in the 1979 survey round on the dates of introduction
of rural health clinics and family planning clinics financed by the
national government for each of the barrios.

- To estimate the effects of the facilities on child health, Rosenzweig
and Wolpin (1986) used a sample of 274 children (defined to be
under age 18 as of 1979) in 85 house-holds for whom height and
weight information exists in both years of the Laguna survey.



Empirical analysis adopts the following statistical model:

Hije = piiB + i + 1j + €ije,

where HZ, is a child health measure (height, weight) for child i
observed at age a, living in locality j at time t. p;; represents the
length of time that child was exposed to the program intervention.

l; is a time invariant, child-specific unobserved health endowment
and W is an unobserved locality level effect.

Compare results using different estimators: simple OLS regression
(without controlling for either p; or p;), OLS regression controlling
for community fixed effects (controlling for u; but not for u;), and
first-differenced regressions (controlling for both u; and ;).



Rosenzweig and Wolpin (1986): Results

The differences in estimated program exposure effects across
specifications are striking. In the height regressions (panel A), both
the cross-section and barrio fixed-effects estimate of health and
family planning clinic effects are generally negative with standard
errors that are at least as large as the point estimates.

The child fixed-effect (longitudinal) estimates, however, indicate
that exposure to health and family planning clinics increases height,
with the family planning effect statistically significant and the
health clinic effect marginally significant.

The point estimates indicate that the height of a child for whom no
health clinic existed would be 5 percent below that for a child
always exposed to a clinic, while exposure to a family planning
clinic increases height by 7 percent.

The weight regressions tell a similar story (see Table 3).



Rosenzweig and Wolpin (1986): Results

Table 3 from Rosenzweig and Wolpin (1986)

OLS Fixed Effect
Variable Cross Section® Barrio Child
A. Log of Standardized Height
Rural Health Unit Exposure — 00473 —.0205 0511
(0.53) (0.40) (1.21)
Family Planning Exposure ~.0131 ~.00913 0710
(1.12) (0.27) (3.32)
R’ 0339 1695 0660"
F 1.88 212 961
d.f. 268 249 272
B. Log of Standardized Weight
Rural Health Unit Exposure — 0313 —.162 0992
(1.35) (1.20) (1.52)
Family Planning Exposure 0263 0803 121
(0.87) (0.90) (2.76)
R’ 0337 1401 0500°
F 1.87 1.69 7.16

*Equation also includes the age and educational attainment of each parent.
"From first-differenced equation.



Udry (1996)

Used a within estimator to test for Pareto efficiency of allocations
within households, an implication of cooperative bargaining models.

Data: rural households in Burkina Faso (ICRISAT data).

In those households, and in many other African households,
agricultural production is carried out on several plots of land, with
different plots being controlled by different members of the
household.

Pareto efficiency implies that farm inputs (seeds, fertilizer, etc.) be
allocated efficiently, so the yield on a particular plot should not
depend on which household member farms it.



Udry (1996) Estimation Strategy

Qhtci = XpoiB + YGhici + Antc + Ehei

where Q=plot yield, X=characterisics of the plot (land quality,
size), h is household, G=gender of the individual who farms the
plot (women=1,men=0), A:.=household year-crop fixed effect.

Finds that, on average, plots controlled by women have higher
values of output per hectare than much smaller plots that are
controlled by men. However, men and women grow different types
of crops:



Udry (1996): Results

TABLE |
Mrax Yirio, Agea, axp Lanor Inruts rer Prot ny Genpzr oF Curnivator
(N = 4,653)
Male Female Nonfamily Child Manure
Crop Output Labor Labor Labor Labor Weight
per Heaare Area (Hours/ (Hours/ (Hours/ (Hours/ (kg/
(1,000 FCFA)* (Heaware) Hecauare) Hectare) Hecuare) Hectare) Hectare)
Mcn's plots 79.9 740 393 248 106 104 2,995
(1664 (1.19) (1,065) (301) (407 (325 (11,15%
Women's plots 105.4 100 128 859 46 53 764
(286 (.16) (324) (1,106) (185 (164) (5.237)
T-statistic -327 29.08 22.16 -21.31 6589 7.08 7.68

Hy: py = By

Norz.—Standard deviaticen are in parentheies
* In 192, the exchange race was approxmaiely USSI = FCFA 525



Jacoby (2002)

e Studies whether public transfers targeted towards children stick to
them, the flypaper effect, or whether their effect is diluted by
intra-household reallocation of food at home away from the child
and toward other household members.

e Studied the impact of a school feeding program in the Philippines
using data on 3,189 children in 159 schools.

e DID estimation strategy compares inter-day (school-day vs.
non-school day) calorie differentials across program participants and
nonparticipants.



Jacoby (2002)

e Analysis assumes that the only reason that the calorie intake of
program participants varies across school and non-school days,
relative to nonparticipants, is because of the school feeding
program.

e A potential threat to the validity of this DID strategy is that the
feeding program might be targeted at poorer households, and poor
children may spend more time working when not in school and
therefore have higher calorie consumption, which would tend to
bias the estimates in favor of finding a fly-paper effect.



Jacoby (2002)

Ci = apD! x D + aaDjg + 85 + Uss

C.I' =daily calorie data for child i in school s, D#=indicator that
calorie data for child i in school s is for a school day, D =indicator
for whether school s offers a feeding program,ds=a school fixed
effect, U;s unobserved child specific determinants of calorie intake.

Note: In some estimations, Jacoby (2002) replaced the term

DE x D2 with DF x D2 x CF, where C is calories from the

program. Thus, ap =1 implies program calories stick with the

child.



Jacoby (2002): Results

Impact of School Feeding Programmes on Caloric Intake

Morning + Afternoon

Snack Maorning Snack Only Total Daly Calores
Specificaton ip &, p-value &p 3, pvalue &p %, pvalue
Al Schools (N = 3,189)
(1) OLS, =0 0.985% 88.9 0.802 4.2 1.059 799
(0069  (10.1) (0.059) (6.5) (0.140) (23.9)
(2) OLS 0.983 4.7 0.000* 0.897 828 0000* 1104 611 0.000*
(0.068)  (10.0) (0.038) (6.5) (0.134) (21.9)
(3) 2SLS (v1)' 1019 B3.1  0.662° 0912 824 0757 L3588 495 0.44%8°
(0.200)  (12.8) (0161 (8.1) (0.452) (28.7) .
(4) 25LS (1ve)* 0977 B30 0635 0911 1000 0.751° L1533 389 0739
(0.198) (16.9) (0.144) (10.7) (0.460) (59.0)
(5) 9SLS (IVY), 1058 1183 0148 00931 1280 026" 1082 656 0616
Day of interview  (0.202)  (26.9) (0.148) (16.2) (0.464) (66.0)
dummics
(6) 9SLS (IV2), 1.106 530 0.024%*  1.004 828 0.146% 1108 877 D.6H8
Month of (0.198)  (18.4) (0,145  C11.2) (0,458) (41.0)
mtemniew
dummies
Schools with m, 2 20 (N = 2,4%0)
(7) Tobut™ 0961 1048 0.920 1302
(0.051) (109 (0.049) (8.3)
(8) Two-Stage 0855 1158 0659 0891 1607 0928
Tobit (IV2)# (0.24%) (224) (0,225 (162)
(9) Censored 0.929 a6.1 0921 1227

LAD (0.068) (14.8) (0,063) (16.4)



Within estimator applications: Glewwe, Kremer, Moulin and
Zitzewitz (2004)

e Questions reliability of DID estimation approach in an application
evaluating the effectiveness of an educational intervention in
Kenyan schools.

e Program provided flip-charts as teaching aids in certain subjects.

e Compares DID estimates to those obtained from a randomized
social experiment.

e DID estimator compares changes over time in test scores in
flip-chart and non-flip-chart subjects within the schools that
received the intervention.

e The experiment randomly allocated the flip-charts to a subset of
schools.

e The experimental results indicate that flip-charts had little effect on
test scores, while the DID estimates are statistically significantly
different from zero at conventional levels.



Kremer et. al. (2004): Results
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Kremer et. al. (2004): Results

Results: The experimental results indicate no learning effect, but DID estimates are
statistically significant. They conclude that the DID estimates are unreliable.

Retrospective estimates of cftect of four thp charts n grades 6 -8

Dependent variable: normalized 1998 test scores

Specification () (2) (3) (4) (5) (6)
Mecan(S.D.) Level estimates Ditts-in-difts

Random effects

School Yes Yes Yes Yes Yes Yes
School % subject No No No No No No Yes
Schools 83 79 79 79 79 79
Pupils 5152 4908 4908 4998 4908 494098
Grades included 68 68 6H-R h-X 6-8 68
Subjects included Sc, Mat,  Se, Mat,  Se, Mag, Sc, Mat, All All

HS HS HS HS

Flip chart variahle

Number of ¢charts in school 1,1 (2.4)  0.192%%% (. 194%%* (205%** 0.076* 0. 154%%* () |ST**»
(divided by four) (0.080)  (0.065)  (0.064) (0.041) (0.057)  (D.056)

Charts * flip-chart 0.049%*  0.040*
subject (Science/ (0.021) (0.024)

Agr., Math, HS-BE)

(ther variables

Note: Cols. (1) - (4) are level estimates. Cols. (5)-(6) are DID estimates. Col (2), (3), (5) and (6) control for school inputs
(textbooks, teacher training); Col (1) does not. Col (4) controls for student scores on non-flip chart subjects.



Kremer et. al. (2004): Results

Prospective estimates of cffect of flip charts—single subject multi-test regressions

Dependent variable: normalized test score

Subject Past pert. Flip-chart school Obs.
Controls Cocft. S.E.

Flip-chart subjects

Science/Agriculture No 0.0005 00752 20,446
Yes — 00007 0.0591

Math No —0.0201 0.0600 20,441
Yes 00212 0.0486

Hcalth Scicnce/Business Ed. (HS-BE) No 0.0295 0.0728 20,434
Yes 00276 00559

Geography/History/Civies/Religious Ed. (GHO) No 00018 00714 20,450
Yes - 00012 0.0553

Non-flip-chart subjects

English No 0.0038 0.0737 20,433
Yes 0.0100 0.0576

KiSwahili No 00110 0.0790 20,448
Yes 0.0146 00737

Arts/Crafis™Music (ACM) No - 00679 0.0758 20417
Yes 0.0723 0.0589

Memo

Math and Science: grades 6 and 7 in 1998 only No 0.0508 0.0828 13,836
Yes 00534 0.0655

Regressions include school and school = year mndom effects and test fixed effects. Past performance controls arc
controls for the school-average performance on the July 1996 practice exam.



Kremer et. al. (2004): Results

Prospective estimates of ¢ffect of flip charts—single test multi-subject regressions

Dependent variable: normalized test score

Test Grade Past perf. 4 Flip chart subjects 3 Non-flip chart subjects Obs.
Controls Coeft, S.E. Coeft, S.E.
All tests 6-8 No 00117 0.0638 0.0149 0.0649 143,069
Yes 0.0063 0.0484 00144 0.0498 141,698
Jul-97 8 No 0.0138 0.0716 0.0388 0.0751 25939
Yes 0.0347 0.0605 0.0627 0.0644 25827
Nov-97 8 No —0.0474 0.0744 — 00516 0.0758 25418
Yes 0.0656 0.0601 0.0700 0.0617 25418
Jul-98 3 No 0.0135 0.0848 0.0102 0.0866 17.882
Yes 0.0325 0.0718 0.0291 0.07329 17,791
Nov-98 8 No 0.0018 0.0708 0.0134 0.0722 25,396
Yes 0.0145 0.0575 0.0043 0.0591 25,060
Oct-98 7 No 0.0061 0.0910 0.0029 0.0925 24,708
Yes 0.0327 0.0669 0.0268 0.0690 24,288
Oct-98 6 No 0.0708 0.1005 0.0612 0.1019 23,726
Yes 0.0579 0.0799 0.0485 0.0817 2335314

Regressions include school, school * subject, and pupil random effects subject and test fixed effects. Pupil
random eflects cannot be included when results are estimated for all tests due to computational constraints. For
the single-test results, excluding pupil effects changes point estimates by no more than 0.0045 and standard errors
by no more than 0.001.



Chapter 5: Matching estimators

A widely-used method of evaluation that compares the outcomes of
program participants with the outcomes of similar, matched
nonparticipants.

Methods were first used in economics to evaluate effects of job
training programs, matching program participants to
nonparticipants. (See, e.g., Heckman, Ichimura and Todd (1997,

1998), Dehejia and Wahba (1999), Smith and Todd (2005).)

Other early applications were to evaluate economic development
and anti-poverty programs.

One of the main advantages of matching estimators is that they do
not require specifying the functional form of the outcome equation
and are therefore not susceptible to bias due to misspecification
along that dimension.



e Traditional matching estimators, proposed in the statistics
literature, pair each program participant with an observably similar
nonparticipant and interpret the difference in their outcomes as the

effect of the program intervention (see, e.g., Rosenbaum and
Rubin, 1983).

e More recently developed methods pair program participants with
more than one nonparticipant observation, using statistical methods
to estimate the matched outcome.

e Propensity score matching - match on conditional probability of
participating in the program (most popular approach).



Two main variants of matching estimators

e cross-sectional matching

e allow for selection on unobservables only in a very limited sense.

e applicable in contexts where the researcher is relatively certain that
the major determinants of program participation are accounted for
and that any remaining variation in who participates is due to
random factors.

e difference-in-difference matching

e identify treatment effects by comparing the change in outcomes for
treated persons to the change in outcomes for matched, untreated
persons.

e allow program selection to be based on unobserved time-invariant
characteristics of individuals.



Cross-sectional matching

Assume that the outcomes (Yp, Y1) are independent of
participation status D conditional on a set of characteristics Z,

(Yo,Y1) LL D |Z . (4)

In the terminology of Rosenbaum and Rubin (1983) treatment

assignment is strictly ignorable given Z. Also assumed that
0<Pr(D=1|Z2) < 1. (5)

Assumption required so that matches for D=0 and D =1
observations can be found.



Cross-sectional matching

If assumptions satisfied, then get mean program impacts by simply
substituting the Yp distribution observed for the matched
non-participant group for the missing Y{ distribution for program
participants, holding constant observables.

Heckman, Ichimura and Todd (1998) show that the above
assumptions are overly strong if the parameter of interest is the
mean impact of treatment on the treated (7T )- require only
conditional mean independence on Yj:

E(Yol|Z,D=1)=E(Yp|Z,D=0)=E(Yp|2). (6)
When a7 is the parameter of interest, only require

Pr(D=1|2Z) < 1. (7)



Cross-sectional matching

Under these assumptions, the mean impact of the program on
program participants can be written as

A = E(Y1—Y|D=1)
= EMM[D=1)—Ezp=1{Ev(Y[D=1,2)}
— E(Yl\D:1)—EZ,D:1{EY(Y\D:O,Z)},
where the second term can be estimated from the mean outcomes
of the matched (on Z) comparison group.

Note:
Ezip=11Evy(Y|D=0,2)} = [, [, yf(y|D =0,z)f(z|D = 1)dydz).



Cross-sectional matching

Conditional independence assumption implies that D does not
predict values of Yy conditional on Z.

Selection into the program cannot be based directly on anticipated
values of Y, other than that which is forecastable given Z.

No restriction is imposed on Y7, so the method does allow
individuals who expect high levels of Y7 to select into the program.

Accommodates selection on unobservables, but only in a very
limited sense through Y7.



Non-overlapping support

With nonexperimental data, there may or may not exist a set of
observed conditioning variables for which matching conditions hold.

A finding of Heckman, Ichimura and Todd (1997) and HIST
(1996,1998) in their application of matching methods to data from
the JTPA experiment is that 0 < Pr(D =1|Z) < 1 was not
satisfied, because no close match could be found for a fraction of
the program participants.

If there are regions where the support of Z does not overlap for the
D =1 and D =0 groups, then matching is only justified when
performed over the region of common support.

The estimated average treatment effect must then be defined
conditionally on the region of overlap.



Rosenbaum and Rubin (1983) provide a theorem that is useful in
reducing the dimension of the conditioning problem. They show
that for random var. Y and Z and a discrete random var. D:

E(D|Y,P(D=1|Z))=E(E(D|Y,2)|Y,Pr(D=1|2)),

so that

E(D|Y,Z)=E(D|Z) = E(D|Y,Pr(D=1|2Z)) = E(D|Pr(D =1|2)).



Using the Rosenbaum and Rubin (1983) theorem, the matching
procedure can be broken down into two stages:

In the first stage, the propensity score Pr(D = 1|Z) is estimated,
using a binary discrete choice model such as a logit or probit or a
semiparametric estimation method (such as Ichimura’s (1993)
semiparametric least squares (SLS))

In the second stage, individuals are matched on the basis of their
first stage estimated probabilities of participation.



Alternative matching estimators

Let P=P(D =1|Z). A typical cross-sectional matching estimator
takes the form:

&M:l Y [Yii—E(YoilD=1,P)] (8)

m ieliNSp

E(YoilD=1,P) =Y W(i.j)Ye;,
J€b

- 1 denotes the set of program participants, Iy the set of
non-participants
- Sp the region of common support.
- n1 denotes the number of persons in the set /; N Sp.
- The match for each participant i € l; N Sp is constructed as a
weighted average over the outcomes of non-participants, where the
weights W(i,j) depend on the distance between P; and P;.



Alternative matching estimators

Define a neighborhood C(P;) for each i in the participant sample.
Neighbors for i are non-participants j € Iy for whom P; € C(P;).

Persons matched to / are those people in set A; where
A,' — {_/ - /0 ‘ Pj - C(P,)}

Alternative matching estimators (discussed below) differ in how the
neighborhood is defined and in how the weights W (i,/) are
constructed.



Nearest Neighbor matching

Traditional, pairwise matching sets
C(P,'): n}inHP,-—PjH,j e Iy.

- That is, the non-participant with the value of P; that is closest to
P; is selected as the match and A; is a singleton set. - The
estimator can be implemented either matching with or without
replacement. When matching is performed with replacement, the
same comparison group observation can be used repeatedly as a
match. A drawback of matching without replacement is that the
final estimate will likely depend on the initial ordering of the treated
observations for which the matches were selected.



Caliper matching (Cochran and Rubin, 1973)

A variation of nearest neighbor matching that attempts to avoid
bad matches (those for which P; is far from P;) by imposing a
tolerance on the maximum distance ||P; — P;|| allowed.

A match for person i is selected only if ||P; —Pj|| <€, € I,
where € is a pre-specified tolerance.

Neighborhood is C(P;) ={P;| ||Pi—P;|l < €}.

Treated persons for whom no matches can be found excluded (way
of imposing a common support condition).

Difficult to know a priori what choice for the tolerance level is
reasonable.



Stratification or interval matching

Common support of P is partitioned into a set of intervals.

Separate impact calculated by taking the mean difference in
outcomes between the D =1 and D = 0 observations within the
interval.

Weighted average of the interval impact estimates, using the
fraction of the D =1 population in each interval for the weights,
provides an overall impact estimate.

Dehejia and Wahba (1999) choose intervals selected such that the
mean values of the estimated P;’'s and P;’s are not statistically
different from each other within intervals.



Kernel matching

Construct matches using a weighted average over multiple persons
in the comparison group.

Consider a nonparametric kernel matching estimator, given by

r P.—P;\ )

A 1 Licl Y06 ( e )

OCKMZn—Z<Y1i— TN (-
Lien | Y kel G( - ) /

where G(-) is a kernel function and a, is a bandwidth parameter.

(See Heckman, Ichimura and Todd (1997, 1998) and Heckman,
Ichimura, Smith and Todd (1998)

P._P.
G| -L—-
The weighting function, W(i,j), is equal to ( o )P_ :
ZkEIO G( g I)

an




Kernel matching

e For a kernel function bounded between -1 and 1, the neighborhood
is C(P) = {|28) <1}, € h.

dn

e Under standard conditions on the bandwidth and kernel function
(G(-) integrates to one, has mean zero and that a, — 0 as n — oo

Yjelg YoiG ( Pja_npi )
Zkelo G ( Pka;Pi )

is a consistent estimator of

and na, — o0.),

E(YOID: 17’Di)’



Determining the overlapping support region

To determine the support region, Heckman, Ichimura and Todd
(1997) use kernel density estimation methods:

Sp={P:f(PID=1)>0and f(P|D=0)> ¢4},

where f(P|D = d), d € {0,1} are nonparametric density estimators

given by
F(PID=d)= ZG(Pk_ >

kely

and where a, is a bandwidth parameter.



Determining the overlapping support region

To ensure that the densities are strictly greater than zero, it is
required that the densities be strictly positive density (i.e. exceed
zero by a certain amount), determined using a “trimming level” gq.
The set of eligible matches is:

S,={PeSp:f(PID=1)>c, and f(P|D=0)>c,},
where ¢, is the density cut-off level that satisfies:

Supi Y {1(F(PID=1) < cg + LL(F(P|D = 0) < ¢} < q.

“q {iE/lﬂgp}

J is the cardinality of the set of observed values of P that lie in
LN gp.

- Matches are constructed only for participants for which propensity
scores lie in §q.



e The literature has developed some alternative, more efficient

estimators. See, for example, Hahn (1998) and Hirano, Imbens and
Ridder (2003).

e Heckman, Ichimura and Todd (1998) propose a regression-adjusted
matching estimator that replaces Yj; as the dependent variable
with the residual from a regression of Yj; on a vector of exogenous
covariates.

e In principal, imposing exclusions restrictions can increase efficiency.
In practice, there was not much gain from using the
regression-adjusted matching estimator.



Ditference-in-difference matching

e For a variety of reasons there may be systematic differences
between participant and nonparticipant outcomes, even after
conditioning on observables, which could lead to a violation of the
matching assumptions.

e For example, could have program selectivity on unmeasured
characteristics, or levels differences in outcomes across different
labor markets in which the participants and nonparticipants reside.

o A difference-in-differences (DID) matching strategy, as defined in
Heckman, Ichimura and Todd (1997) and Heckman, Ichimura,
Smith and Todd (1998), better accomodates the potential for
selection on unobservables by allowing for temporally invariant
differences in outcomes between participants and nonparticipants.



Ditference-in-difference matching

Estimator is analogous to the standard DID regression estimator
defined, but reweights the observations according to the weighting
functions implied by matching estimators.

Assumes that that

E(Yor — Yor|P,D=1)=E(Yor — Yor|P,D =0),

where t and t’ are time periods after and before the program
enrollment date.

Also requires the support condition, which must hold in periods t
and t'.



Ditference-in-difference matching

The local linear difference-in-difference estimator is:

6CKDMZl Y {(YltiYOt’i) Y W(iaj)(YOthOt’j)}a

n ielhNSp JEILNSP

with LLR weights. If repeated cross-section data

66;(0/\//:i Z {(Ylti Z W(’.a./.)YOtJ}

n]'t I.EI]_thP jEIothP

1

——x ) {(Ylt’i )3 W("af)YOt’j}ﬁ

n/
1t jel,yNSp JE gy

where h¢, by, lot, lor denote the treatment and comparison group
datasets in each time period.



Ditference-in-difference matching

- Allows selectivity into the program to be based on anticipated
gains from the program, but only in a limited way

- D can help predict the value of Y7 given P., but D cannot predict
changes Yy (i.e. Yor — Yo#) conditional on P.



Matching with choice-based sampled data

e Samples used in evaluating the impacts of programs are often
choice-based, with program participants being oversampled relative
to their frequency in the population.

e Weights are required to consistently estimate the probabilities of
program participation, where the weights equal the ratio of the
proportion of program participants in the population relative to the
proportion in the sample.(see, e.g., Manski and Lerman (1977)).

e True population proportions usually are not obtainable from the
sample and have to be derived from some other sources.



Matching with choice-based sampled data

When weights are known, the Manski and Lerman (1977)
procedure can be used to consistently estimate propensity scores.

If weights not known, Heckman and Todd (1995) show that with a
slight modification, matching methods can still be applied, because
the odds ratio (P/(1— P)) estimated using a logistic model with
incorrect weights (i.e. ignoring the fact that samples are
choice-based) is a scalar multiple of the true odds ratio, which is
itself a monotonic transformation of the propensity scores.

Matching can proceed on the (misweighted) estimate of the odds
ratio (or the log odds ratio).

Failure to account for CBS will not affect nearest-neighbor point
estimates, but will matter for kernel or local linear matching
methods, because these methods take into account the absolute
distance between the P observations.



When does bias arise in matching?

- Success of a matching estimator depends on the availability of
observable data to construct the conditioning set Z, such that the
matching assumptions are satisfied. - Suppose only a subset

Zy C Z of the variables required for matching is observed. The
propensity score matching estimator based on Zy then converges to

o = Ep(zp)p=1 (E(Y1|P(Z),D =1) — E(Yo|P(Z),D = 0))-( )
3

- The bias for the parameter of interest, E(Y; — Yo|D =1), is

biasM — E(Yo’D — ].) — EP(ZO)|D:1{E(YO‘P(ZO)7 D = O)}



Choosing the matching variables

No statistical procedure for choosing the set. The set Z that
satisfies the matching conditions is not necessarily the most
inclusive one. Augmenting a set that satisfies the conditions for
matching could lead to a violation of the conditions.

Using too many conditioning variables could also exacerbate a
common support problem.

Heckman, Ichimura, Smith and Todd (1998), Heckman, Ichimura
and Todd (1999) and Lechner (2001) show that which variables are
included in the estimation of the propensity score can make a
substantial difference to the estimator’'s performance.

Biases tended to be more substantial when cruder sets of conditioning
variables where used.

The set Z can be chosen to maximize the percent of people correctly
classified by treatment status under the model.



Other determinants of the performance of matching
estimators

Perform best when the treatment and control groups are located in
the same geographic area, so that regional effects on outcomes are
held constant.

Important to use the same survey to gather data on the comparison
group and treatment group, so variables measured in same way.

Difference-in-difference matching methods are more reliable than
cross-sectional matching methods when treatments and controls are
mismatching geographically or in terms of the survey instrument.

The success of matching depends strongly on the data capturing
the key determinants of the program participation decision.



Balancing tests

Rosenbaum and Rubin (1983) present a theorem that does not aid
in choosing which variables to include in Z, but which can help in
determining which interactions and higher order terms to include in
the propensity score model for a given set of Z variables.

The theorem states that

Z1LD|Pr(D=1|2),
or equivalently
E(D|Z,Pr(D=1|Z))=E(D|Pr(D =1|2)).

After conditioning on Pr(D = 1|Z), additional conditioning on Z
should not provide new information about D. If there is still
dependence on Z, this suggests misspecification in the model used

to estimate Pr(D = 1|2).

Theorem holds for any Z, including sets Z that do not satisfy the

~anditianal indenendence conditian reatiired +a inictifty matchine Ac



Balancing tests

Motivates a specification test for Pr(D = 1|Z), which tests whether
or not there are differences in Z between the D=1 and D =0
groups after conditioning on P(Z).

Various testing approaches have been proposed in the literature.

Eichler and Lechner (2001) use a test based on standardized differences in terms of
means of each variable in Z, squares of each variable in Z and first-order interaction
terms between each pair of variables in Z.

Dehijia and Wahba (1999,2001) divide the observations into strata based on estimated

propensity scores and do tests within strata. Common to use five strata.



Balancing tests

Another way of implementing the balancing test estimates a
regression of each element of the set Z, Z, on D interacted with a
power series expansion in P(Z):

Zy = 0+PiP(2)+BP(Z2)°+BsP(Z) +...+ BiP(Z) +
nP(Z)D +1P(2)*D+1P(Z)*D+...+yP(ZYD+v,

and then tests whether the estimated 7y coefficients are jointly

insignificantly different from zero.

- When significant differences are found , higher order and
interaction terms in those variables are added to the logistic model
and the testing procedure is repeated, until such differences no
longer emerge.



Assessing the variability of matching estimators

- Distribution theory for cross-sectional and DID kernel and local
linear matching estimators is derived in Heckman, Ichimura and
Todd (1998), although implementing the asymptotic formulae can
be cumbersome.

- Bootstrapping can be used, but only if estimators use a fixed
bandwidth.

- Imbens and Abadie (2004a) shows that standard bootstrap
resampling methods are not valid for assessing the variability of

nearest neighbor estimators and they present alternative standard
error formulae.



Chapter 6: Modeling program participation

e Propensity score plays an important role in the implementation of
matching estimators and in other estimators considered later.

e There is no statistical method for determining which observed
variables belong in the propensity score model, but one can use
economic theory as a guide.

e Use model similar to that developed in Heckman, Lalonde, and
Smith (1999)



Modeling program participation

Assume individuals have the option to take training in period k.
Prior to k, we observe Yp;, j=1,.. k.
After k, we observe two potential outcomes Yy and Yi;

To participate in training, individuals must apply and be accepted,
so there may be several decision-makers governing participation.

D =1 if participates and D = 0 else.

Participation decisions are based on maximization of future earnings
and that future earnings are uncertain.



Modeling program participation

D=1if

S R WL AR

J=0

- First term is the earnings stream if the person participates in the
program

- C is the direct cost of training.

- The last term is the earnings stream if the person does not
participate, which includes period k earnings.

- I is the information set at time k used to form expectations
about future earnings.



Modeling program participation

Implications about who takes training and about the value of past
earnings in modeling program participation:

. Past earnings are irrelevant except for value in predicting future
earnings

. Persons with lower foregone earnings or lower costs are more likely
to participate in programs

. Older persons and persons with higher discount rates are less likely
to participate

. The decision to take training is correlated with future earnings only
through the correlation with expected future earnings.



Modeling program participation

A special case of this model is when the treatment effect is
constant, in which case

_]_IfE[Z —|—r) “k]>C—|—YOk

If period k earnings (Ypx) are temporarily low (e.g. currently
unemployed), then people are more likely to enroll in the program.
This implication of the model is consistent with the Ashenfelter Dip
pattern.



Modeling program participation

To get an empirically implementable model, as in Heckman,
Lalonde and Smith (1999), assume that the expected future
rewards are modeled as a function of some X variables that capture
the information set used in forecasting future earnings:

Yikej o Yokt
HX)=Y =) | le]

and that costs of training, including of foregone earnings costs are
unobserved:

V =C+ Y.



Modeling program participation

Then, D=1 if H(X)—V >0. If we further assume that V is
stochastically independent of X and distributed either logistic or

normal (with mean u, and variance 62), we get either a logistic or
normal propensity score model:

SH(X)
+ eH(X)

Pr(D =1|X) =

or

Pr(D = 1|X) = &( H(ng_ vy



Modeling program participation

1. To summarize, variables included in the propensity score should be
those variables that an individual might use to forecast future
outcomes, which determine the benefits from participating in a
program.

2. Past outcomes are relevant to the extent that they are used to
forecast future outcomes, with or without the treatment
Intervention.



Evidence on performance of matching estimators

We can study the performance of nonexperimental estimators by
comparing experimental and nonexperimental estimates.

One strategy is to directly compare a randomized-out control group
to a nonperimenal group.

Because neither group received treatment, any impact estimator
applied to those groups should give a value of zero.

Can also study how performance varies with conditioning variables
or data sources used.



Data quality

Comparison groups used in different studies

TABLE |

Study

Ashenfelter (1978)

Ashenfelter and Card (1985)

Dickinson-Johnson-West
(1987)

Westat (1986)
(Rupp and Bryant)

Programme, year, outcome variable MDTA Classroom Trainees 1976 CETA Trainees (1977, 1978 annual social security 2 cohorts of CETA Trainees
(First 3 months 1964), 1965- 1978 annual social security earmings. CETA trainees 1977, 1978 annual social
1969 annual social security record earnings), CLMS enrclled in 1976, CLMS. data  security record earnings,
record earnings data CLMS data
(1) Comparison group in the same No No No No
labour market?
(2) Same questionnaire administered Yes Yes Yes Yes
to comparison and treatment
(3) Matching criteria (criteria for None specified (a) 1975 earnings =S20K (Matching based on a metric  Match on 1976 earnings,
membership in comparison Household over vectors of variables) change in 1976 eamings
sample is also called “*screening” income = $30K Matched on predictors of (1975-1976, 1974-1975)
criteria) (b) In labour force (March, 1978 earnings including change in earnings,
1976) lagged earnings (1975-1970),  demographics, 1975 labour
Matched on age worked in public sector, sex,  force status, family income
(persons =21 used) and demographics. In labour  (for 19761977 cohort one
forcz, March, 1976 year previous for 1975-1976
cohort). Either in the labour
force, 1975 or at interview
March 1976. Three matching
groups based on income.
(4) Elgibility for programme known  No No No No
for companson group members?
Variables used in analysis
Age, race, sex Yes Yes Yes Yes
(No age restriction) (Age =21 years old) (Age 21-65) (Age 14-60)
Education No Yes Yes Yes
Training history No No No No
Children No No No No
Employment histories No No Yes (recent) Yes (recent)
Hours worked No Yes Yes Yes
Unemployment histories No No Yes (recent) Yes (recent)
On welfare No No Yes No
Earning histories** (Annual earnings) (Annual earnings) Same as Ashenfelter and (Annual earnings)
S years pre-programme 2 years pre-programme Card (1985) 4 years pre-enrollment

$ years post-programme

2 years post-programme

earnings histories

** CLMS data matched Social Security Longitudinal Records to March CPS data for 1976 and 1977. The CPS data are for comparison group members. SSA data on
longitudinal earnings are available for both groups. All of the personal and family information available in the CPS including short-term employment and labour-force
participation histories are available but not necessarily used in the analysis. The CLMS studies all use the socizl security earnings data.



Data quality

NSW (supported work) data

Study

LaLonde (1986)

Fraker and Maynard (1987) and
LaLonde and Maynard (1986)

JTPA data

Programme, year, outcome variable

Annual carnings 1978 annual social
security earnings and PSID earnings
NSW (Supported Work) Data

1977, 1978, 1979 annual earnings for
AFDC recipients and for youth NSW
(Supported Work) Data

Quarterly and monthly earnings
1987-1989

(1) Comparison group in the same local
labour market

(2) Same questionnaire administered to
comparison and treatment group?

(3) Marching criteria (criteria for
membership in comparison sample is
also called “'screening criteria™)

No
No

PSID: (a) Men and Women who are
household heads 1975-1979

CPS: Matches March 1976 CPS
carmnings with SSA earnings.

Person with 1976 income =$20K and
houschold income = $30K

No
No

Three Samples

(i) Eligible in samp e period: for
youth: high school dropout-exclude
n school youth. For AFDC: age of
youngest child, receipt of welfare
matching.

(ii) Cell matching: tased on
predictors of 1979 SSA earnings of
eligibles: (earnings prior to
programme participation),
demographics, education, family
income, change in earnings.

(iii) Stratified matches on imputed
1979 earnings: earnings estimated on
eligible nonparticipant sample plus
demographic criteria (race, sex).
Same criteria for prediction as in (ii).

Yes
Yes
Persons screened to be eligible for

JTPA; out of school youth, no
disabled persons; Title ITA only

(4) Eligibility for programxme known for No No Yes
comparison group members?
Variables used in analysis
Age, race. sex Yes: Women AFDC recipients 20-55,  Same as LaLonde Yes
Males £ 55

Education Yes Same as LaLonde Yes
Training history No Same as LaLonde Yes
Children Yes Same as LaLonde Yes
Employment histories No Same as LaLonde Yes
Hours worked No Same as LaLonde Yes
Unemployment histories No Same as LaLonde Yes
Welfare receipt? Yes Same as LaLonde Yes
Earnings histories Two years post-programme Same as LaLonde (Five years of pre-programme

Two years pre-programme

earnings) monthly earnings
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Dip pattern
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Prop Score Model

TABLE 3
COEFFICIENT ESTIMATES AND p-VALUES FROM WEIGHTED PARTICIPATION LOGIT +
BEST PREDICTOR MODEL FOR THE PROBAEILITY OF PARTICIPATION +~
Experimental Control and Eligibile Nonparticipant (ENP) Samples
Dependent Variable: 1 for Experimental Control, 0 for Eligible Nonparticipant
Adult Males, 508 Controls and 388 ENPs

Variable: Coeff Std Error p-Value~
Intercept -3.07 083 0.0000
Fort Wayne, IN 245 041 0.0000
Jersey City, NJ 0.66 043 01273
Providence, RI 219 044 0.0000
Black 0.49 033 0.1333
Hispanic 0.43 040 02837
Other race /ethnicity 0.61 055 0.2653
Aze30to 39 -0.50 030 0.0926
Aze 401049 -0.60 038 01115
AzeS0to 54 -0.29 062 0.6361
Fewer than 10 years schooling -0.83 040 0.0397
10-11 years schooling 0.66 034 0.0510
13-15 years schooling 0.20 035 0.0096
16 or more vears schooling -1.38 0354 0.0101
Last married 1-12 months prior to RA/EL** 042 0.80 0.5005
Last married =12 months prior to RAEL -0.03 0.61 09648
Single, never married at RA/EL 0.71 036 0.0408
Child age less than § present in household -0.16 038 0.6761
Unemployed -> Employed 1.52 042 0.0003
OLF -= Employed 0.79 0.76 03016
Employad -= Unemployed 246 046 0.0000
Unemployed -= Unemployed 2.67 058 0.0000
OLF -= Unemployed 327 0.60 0.0000
Employad -= OLF 255 061 0.0000
Unemployed -= OLF 230 0.87 0.0085
OLF -= OLF -0.15 061 0.8002
One job in 18 months prior to RAEL 041 039 02894
Two jobs in 18 months prior to RAEL 057 050 02600
More than two jobs in 18 months prior to RAEL 1.87 052 0.0003
Enrolled in vocational training at RAEL 1.94 0.62 0.0019
Ever had vocational training? -0.28 032 03815
Total number of household members -0.25 0.10 00134
Eamings in the month of RAEL -0.00 0.00 0.0000

T We:ghts are used in the estimation P«ocedme t0 account for choice-based sampled data. It 1s assumed that in 2 random sample
Controls reprasent 3% and ENPs 87% of the aligible population.

TT The omittd traiming center is Corpus Christi, T3 the omitted race is white; the omittad age group is 22-29; the omitted schooling
category is twelve years; the omitted marital status is cumrently marmed at RA/EL: the omitted labor force mransition pattsm is
Employed -» Employed; the omittzd number of j0b spells in the 18 months prior to RAEL is zero.

* Reported p-values are for two-tazled tests of the null hypotheses that the mus coeficient equals zero.

** RAEL indicates the month of random assiznment (RA) for the experimental controls and the date of eligibility (EL) for Elizible
Nomnparticipants (ENPs)



CS Matching

TABLE 5(a)

Estimated bias for alternative nonparametric matching methads*
Experimental controls and eligible nonparticipants (ENPs)11

Nearest Nearest
Difference neighbour neighbour Difference-in- Difference-in-
in without with Local linear Ragression- differences from differences from
means common common P score adjusted local local linear P regression-adjusted
Quarter (B) support support matching linear matching  score matching  local linear matching
Adult males
=] ~418 (38) 221 (56) 123 (67) 33 (59) 39 (60) 97 (62) 104 (63)
=2 —349 (47) —166 (151) 77 (83) 37 (61) 39 (64) 77 (89) 77(92)
t=3 —337 (55) 58 (206) 53(96) 29 (78) 21 (80) 90 (114) 74(114)
(=4 ~286 (57) 161 (178) 86 (96) 80 (77) 65 (82) 112 (90) 98 (91)
=5 —305(57) 167 (196) 87 (100) 64 (77) 50 (83) 19 (95) =5099)
=6 —328 (63) 45(191) 34(113) 37(82) 17 (90) 4(105) =35(111)
Ave. 1106 —337(47) 62 (127) 77 (80) 47 (60) 38 (64) 67 (71) 52(74)
As a % of impact** T75% 142% 177% 108% 8% 153% 120%
As a % of adjusted impact $52% 102% 126% 7% 62% 109% 85%
Adult females
=1 -26(24) 115(30) 67 (36) 45 (33) 55 (36) 65 (31) 74 (30)
1=2 29(25) 113 (53) 47 (46) 48 (37) 55(39) 53 (40) 60 (39)
=3 38(26) 124 (107) 63 (59) 26 (48) 31 (52) 10 (56) 14 (59)
1=4 55(30) 106 (102) 58 (52) 36 (39) 35 (45) 12(53) 7(56)
=35 62 (34) 92(111) 47 (51) 48 (40) 48 (45) 29 (51) 23 (53)
=6 40 (36) 79 (84) -6 (54) 23 (40) 16(42) =5(51) ~18(51)
Ave. 1106 33 (26) 105 (69) 46 (43) 38 (33) 40 (38) 27 (38) 27(39)
As a % of impact** 113% 358% 157% 130% 137% 93% 91%
As a % of adjusted impact 94% 300% 131% 109% 114% 78% 76%

* The table reports the bias for alternative matching methods. The bias in the first column is §. The estimator in the second column does not restrict matches to a common
support region. The estimators in the third through seventh columns restrict matches to a common support regicn and the bias estimates correspond to Bs,.

T The best predictor model given in the second footnote to Table 2, is used to estimate the probability of programme participation. The conditioning variables in the
regression adjusted local linear models are site, race, age, education, previous training, work experience in months, the local unemployment rate, indicator variables for
marital status and for the presence of a child aged less than 6 in the household, and indicators for the quarter of the year and the year.
¥ A 2% trimming rule is used to determine the region of overlapping support (see Appendix C). A fixed bandwidthiequal to 0-06 and a biweight kernel, defined in Appendix
A, are used for the nonparametric estimates.
** The impacts in the table are mean monthly impacts for the six post-programme quarters, estimated using the experimental treatment and control data for the four
JTPA training sites in our study, See the experimental impacts and the adjusted impacts in Table 4.



CS Matching

TABLE 5(b)

Estimated bias for alternative nonparametric matching methods*
Experimental controls and eligible nonparticipants (ENPsyt1

Nearest Nearest
Difference neighbour neighbour Drifference-in- Difference-in-
in without with Local linear Regression- differences from differences from
means common common P score adjusted local local linear P regression-adjusted
Quarter ({i)] support support matching linear matching score matching  local linear matching
Male youth
=1 —51(58) 146 (92) 49 (75) 3(64) 8(61) 43(72) 80 (77)
1=2 2 (60) 197 (92) 98 (82) 40 (64) 28 (55) 43 (60) 61 (60)
t=3 5(73) 202 (105) 83(119) 33(81) -8(77) 92 (80) 70 (86)
1=4 17 (69) 246 (105) 98 (94) 44 (81) 4(71) 9 (74) =5(77)
=5 82(73) 283(118) 138 (89) 84 (93) 42(76) 18 (88) ~11(81)
1=6 65(77) 258 (145) 129 (121) 28 (93) =31(92) -23(89) —64 (84)
Ave. 1to 6 20 (57) 222 (88) 99 (78) 39 (66) 7(53) 30 (49) 22 (48)
As a % of impact** 34% 382% 170% 67% 12% 52% 38%
As a % of adjusted impact 6% 617% 275% 108% 19% 84% 61%
Female youth
=1 6(31) 67 (54) =T (60) 31 (42) -8 (46) —=7(38) —14 (41)
1=2 54 (40) 85(57) 23 (60) 79 (53) 27 (49) 60 (49) 27 (47)
=3 89 (44) 142 (62) 97 (78) 121 (60) 49 (52) 135(59) 83 (58)
=4 42 (50) 89 (56) 24(72) 37(59) ~28 (59) 45 (57) 4(59)
=5 64 (41) 121 (57) 51(63) 65 (54) 8 (54) 45 (61) —7(63)
1=6 31 (46) 107 (82) 34 (70) 34 (65) 1(62) 31 (70) 6(69)
Ave. 1t0o 6 48 (36) 102 (49) 37 (56) 61 (45) 8(42) 52 (39) 17 (39)
As a % of impact** 7059% 15000% 5441% 8971% 1176% 7574% 2426%
As a % of adjusted impact 195% 415% 150% 248% 313% 209% 67%

* The table reports the bias for alternative matching methods. The bias in the first column is . The estimator in the second column does not restrict matches to a common
support region. The estimators in the third through seventh columns restrict matches to a common support region and the bias estimates correspond to By,.

t The best predictor model given in the second footnote to Table 2, is used to estimate the probability of programme participation. The conditioning varables in the
regression adjusted local linear models are site, race, age, education, previous training, the local unemployment rate, indicator variables for marital status and the presence
of a child aged less than 6 in the household, and indicators for the quarter of the year and the year.

+ A 5% trimming rule is used to determine the region of overlapping support (see Appendix C), and a fixed handwidth equal to 0-06 and a biweight kernel, defined in
A‘ppendix A, are used for nonparametric estimates.

** The impacts in the table are mean monthly impacts for the six post-programme quarters, estimated using the experimental treatment and control data for the four
JTPA training sites in our study. See the experimental impacts and the adjusted impacts in Table 4.



DID matching

TABLE &(a)
Baufmm local hnear reg) ort
Under al predis del: /or rlu pmbab&ftty o}',.. w particig
Quarter  Regulartt  Coarse I} Coarse 11} Coarse 111IT SIPPS  Site mismatch® No-shows
Adult males
t=1 I9(60)  ~390(51) —228(67) -84 (7T 2297 —184(110) 58 (38)
t=2 I9(64)  ~312(58)  —193(61) —39(88) 123(79) =154 (120) 37(39)
=3 21(80) —286(62) —153(57) —36(96) 76 (81) ~147 (127) 27(42)
(-4 65(82) 231 (83) —104(66) -9(92) 13(93) ~164 (132) ~6 (48)
=5 SO8Y) 24471}y —146(70) 20(96) “(») =211 (132) 1(48)
1=6 17(%0) -286(34) —172(79) “3(111) s (e) ~18%(112)  —21(48)
Ave. 1 to 6 IR(64) ~291(54) ~166(56) ~25(83) 115(78) =175 (108) 16 (37)
Adult females
t=1 55(36) ~69 (33) ~73(29) 40(30) 167 (3%5) —84 (56) 26(28)
-2 55(39) ~9(33) -15(29) 63(34) 122 (40) —-57(69) 9(16)
=3 31(52) 5(3%) -6(31) 42 (40) 98 (40) —62(70) =13(37)
-4 35(45) 5(34) —=10(34) 21(47) 87(43) —42 (60) 2(35)
=5 48 (45) 14(3%) -6(37) 26 (48) . () ~18(63) 1(31)
1=6 16 (42) =10(37) =24 (37) —2(44) *(s) ~35(58) =2(34)
Ave. 1106 40 (368) 11(31) 22(29) 32(35) N9 =$3(5T) 1(30)
Male youth
=1 8(61) ~41 (56) ~40 (53) 37(61) 302 (120) —29 (108) 104 (44)
=2 28 (55) 10 (62) 9(63) 45(65) 275(140) 12(110) 16 (41)
=3 ~8(77) =29 (74) =24 (76) 10(83) 2217(153) 3R (138) T0 (48)
=4 4(71) 2(69) £(70) 30(81) 157(176) 110 (162) 116 (45)
=5 42(76) 63(72) TI(M) 46 (99) “(®) 132 (182) 95 (48)
(=6 -31 (92) 9(76) 20(75) —68(131) e (e) ~63(210) 108 (53)
Ave 1106 7(53) 2(52) £(52) 17(70) 238 (144) I3(128) 88 (18)
Female youth
=1 ~8 (46) 3(34) 17(32) 60(45) —11(72) T4(76) $5432)
=2 27 (49) 46 (39) 54(39) 81(46) —31(™) 9NN 52(32)
=3 49 (52) 64 (42) T2(41) 101 (51) —37(82) 84 (90) T4 (34)
(=4 -28(59) 18 (48) 18(47) 48 (87) —S55(8%) =33(119) 21 (%)
=5 $(54) 46 (43) 4% (41 46 (56) 0 21(131) 37(39)
=6 1(62) 37(50) 40 (48) 18 (62) “(*) =3(114) 57(36)
Ave 1o 6 8(42) 36 (36) 41(35) 62(42) —34(78) 39 (B3) 49 (26)

t A 2% trimming rule is used for adull males and females to determine the overlapping support nemon (see

Appendix C) and a 5% trimming rule is used for mabe and female youth. A fixed bandwidth of 006 and a

bumgm kermel, duaﬂaed -n Awmdlx A, are wsed 10 compuse the estimates for all four groups. Bootstrapped
dard errors are sh h They are based on 50 replications with 100% sampling.

* Data not available to compmc for this quuner Averages reported over available quarters.

11 The regular or model is the model for the pl’obablllly of programme participation that maximizes the

percent <ori classified. The regressors in the model for each demographic group are given in the footnole

to Table 2

§ Coarse di del includes indicator variables for site, race, age. education, marital status, and for the

presence of children aged less than 6 in the houschobd. Coarse Il predictor model augments Course 1 with

carning) from the year preseding enroliment into the programme. Coorm 11 predwtor madel augments Coarse

1 with indscators for labour force transition patterns.

§SIPP predictor model includes indicators for age, race, education, marital status, children aged less than 6,

labour force transition s and levels of earnings in the preceding year. The data used are SIPP JTPA

cligibles matchad with m-nuul JTPA Controls.




DID matching

TABLE &(b)

Bias from difference-in-differences local lnear regression estimatort
Under alfernative predictor models for the probability of programme participation

Quarter Regulart Coarse 1t Coarse 113 Coarse 1117 SIPPS Site mismatch}

Adult males
=1 104 (63) 167 (67) 31 (87 67 (68) =97 (3%) =135(126)
=2 TI(92) 143 (82) —80 (62) 103(107) —230(51) =72(130)
1=3 74 (114) 62 (95) —~158 (1) 105(138)  -277(52) —-9(141)
=4 98 (91) 13(93) —150 (82) 47(109) -318(72) 19(151)
=5 =5(99) ~73(IM) =254 (86) ~29(122) s() =136 (167)
=6 ~35(111) <143 (108)  ~255(86) ~35(129) s (s) ~B2(163)
Avw. 1106 S2(74) 32(78) =144 (61) 43(95) =236 (45) ~69(123)
Adult females
r=1 74 (30) 80 (24) 71(23) 86 (25) =43 (10) 38 (42)
[=2 60 (39) 69 (35) 54 (33) B5(35) ~86 (25) 66 (56)
=3 14(59) 0 (39) =1(37) 25(49) -99(27) 43 (66)
r=4 T(56) -16(42) =34 (40) =15(59) =116 (36) 67 (62)
=5 23(53) -9(42) —26(42) =5 (55) w(*) 80 (68)
r=6 -18}51 —44 (42) -52(43 - }53 w(e) 48 (72
Ave | to & m® 17¢31) (%0 % -84 (1) b (50;
Male youth
t=1 B0(77) 123 (56) 111 (56) 194 (85) 22(53) 92 (98)
=2 61 (60) 102 (73) 81(72) 58 (72) 12(78) 1(118)
=3 70 (86) -9 (88) ~23(87) 38 (100) ~60 (102) 33(152)
=4 =5(77) —45(%81) =54 (80) ~6 (B5) ~85(135) 32(157)
=5 =11 (81) 34 (85) 28 (82) =3 (108) » (%) 25(188)
=6 —64 (84) 13(83) 19 (80) =74 (126) » (%) =117(211)
Ave 106 22(48) 37 (3%6) 27(54) M (5) -25(%1) =20(122)
Female youth
-1 -14 (41) 55(19) 62 (41) 14 (38) -14(31) 5(66)
t=2 27(47) 82 (42) 75 (42) 48 (47) —-67(33) 20 (B8)
=3 B3 (S8) 116 (51) 106 (52) 91 (62) ~50 (46) BO(111)
(=4 4(59) 53 (48) 36 (48) 30 (56) =96 (60) ~21(139)
=5 =7(63) ~1(43) -8 (43) =16 (60) » (%) 44(154)
=6 6(69) 2(53) 5(53) =3(7) » (%) 2(134)
Ave 106 17(39) 52(35) 46 (35) 28(39) —67 (3%) 25 (87)

T A 2% trimming rule &5 wsed to determine the overlappang support reglon for adult groups &nd & % trimming
rule & used for the youth groups (see Appendix C), A fixed bandwidth equal to 0-06 and 2 biweght kernel,
described in Appendix A, are used to compute the nonparametnc estimates,

* Data not available to compute for these periods. Averages are reporied over available quarters.

{ The alternative predictor models for the probability of programme participation are described in the footnote
to Table 6(a).



Using No-shows as comparison group

TABLE 7

Estimated bias for alternative nonparametric matching methods*
Experimental controls and no-showst

Regression-adjusted
Difference in Local linear P score  Regression-adjusted Difference in ~ Local linear P score  local linear matching
Quarter means matching local linear matching means matching
Adult males Adult females
=1 64 (35) 66 (39) 58 (38) 17 (24) 28 (30) 26 (28)
1=2 32(37) 45 (40) 37(39) 7(30) 11 (38) 9(36)
=3 26 (41) 36 (42) 27(42) ~5(30) -9 (38) =13 (37)
=4 19 (46) 3(49) —6 (48) 12 (28) 5(36) 2(35)
1=5 22 (49) 10 (51) 1(48) 14.(24) 4(32) 1(31)
1=6 7(50) =12 (52) =21 (48) 11(27) 1 (36) -2(34)
Ave. 1106 29(37) 25(39) 16 (37) 9(23) 7(31) 4(30)
As a % of impact** 66% 5% 3™ 2% 23% 14%
As a % of adjusted impact 4% 41% 26% 2% 20% 11%
As a % of Control-ENP 8% 53% 42% 2% 18% 10%
Male youth Female youth
t=1 92 (37) 116 (41) 104 (44) 12 (30) 53 (33) 55(32)
=2 33(38) 49 (43) 36 (43) 17(27) S2(37) 52(32)
t=3 56 (42) 80 (47) 70 (48) 39(31) 80 (35) 74 (34)
=4 111 (36) 133 (42) 116 (45) -7(32) 23.(39) 21 (36)
1=5 100 (39) 108 (46) 95 (48) 17 (34) 39 (46) 37(39)
=6 111 (43) 111 (47) 108 (53) 30 (31) 58(39) 57(36)
Ave. 1106 84 (31) 99 (34) 88 (38) 18 (23) 51 (30) 49 (26)
As a % of impact** 144% 171% 152% 2639% 74748% 7273%
As a % of adjusted impact 233% 276% 245% 3% 207% 201%
As a % of Control-ENP 419% 255% 1258% 3% 83% 618%

* The table reports the bias for alternative matching methods. The bias in the first column is . The estimators in the second and third columns for each group restrict

matches to the common support region and the bias estimates correspond to Bs,.

t The predictor model given in the second footnote to Table 2 is used to estimate the probability of programme participation. The conditioning variables in the regression
adjusted local linear models are site, age, education, race, the local unemployment rate, indicator variables for marital status and for the presence of children aged less
than 6 in the household, and indicators for the quarter of the year and the year.

1 A 2% trimming rule is used to determine the region of overlapping support for adult groups and a 5% trimming rule is used for youth groups (see Appendix C). A fixed
bandwidth equal to 0-06 and a biweight kernel, defined in Appendix A, are used for nonparametric estimates.

** The impacts in the table are mean monthly impacts for the six post-programme quarters, estimated using the experimental treatment and control data for the four

JTPA training sites in our study. See the experimental impacts and the adjusted impacts in Table 4,



Matching applications in development

- Jalan and Ravaillon (2003a) use pOscore matching techniques to
evaluate effects of a workfare program in Argentina on wages.
Jalan and Ravaillon (2003b) use p-score matching to study effects
of piped water in rural India on child health outcomes.

- Handa and Mallucio (2006) study the performance of matching
estimators by comparing matching-based estimates to estimates
obtained from a randomized social experiment. Find that
estimators perform well only for outcomes that are relatively easily
measured, such as schooling attainment, less well for more complex
such as expenditures. Imposing common support and choosing
highly comparable comparison groups improvesperformance.



Matching applications in development

- used in evaluation of the urban Oportunidades CCT program in
Mexico .

- Matches for treatment group households were drawn from two
data sources: families who did not sign up for the program but who
otherwise met the eligibility criteria, and families who met the
eligibility criteria for the program but who were living in areas
where the program was not yet available.

- The estimated propensity score model used to impute propensity
scores in nonintervention areas. - DID matching estimators applied
when possible.

- Find statistically significant program impacts on school
enrollment, educational attainment, dropout rates, employment and
earnings of youth, and on the numbers of hours spent doing

homework. (Behrman, Garcia-Gallardo, Parker, and Todd, and
Velez-Grajales (2012)



Matching applications in development

Galiani, Gertler, and Schargrodsky (2005) analyze effects of
privatization of water services on child mortality in Argentina using
DID matching.

- Godtland, Sadoulet, de Janvry, Murgai and Ortiz (2004) apply
cross-sectional p-score matching estimators to evaluate effects of
agricultural extension services in Peru.

- Gertler, Levine and Ames (2004) use CS matching to study of
effects of parental death on child outcomes.

- Lavy (2004) study effects of a teacher incentive program in Israel
on student performance.

- Angrist and Lavy (2001) study effects of teacher training on
children’s test scores in Israel

Chen and Ravaillon (2005), in a study of a poverty reduction
project in China.



Chapter 7: Control function estimation

Also known as generalized residual methods

Proposed as a solution to the evaluation problem in Heckman and
Robb (1986), but are related to Heckman (1976, 1979, 1980).

Early applications are Willis and Rosen (1979), Heckman and
Sedlacek (1985).

Defined within the context of an econometric model for the
outcome process.



Control function estimators

e Explicitly recognize that nonrandom selection into the program
gives rise to an endogeneity problem and aim to obtain unbiased
parameter estimates by explicitly modeling the source of the
endogeneity.

e Allow selection into the program to be based on time varying
unobservable variables, under some assumptions needed to secure
identification of the treatment effect.



Write the model for outcomes as
Y = @o(X)+ Dot (X) + &,
where
a7 (X)=E(Y1—Yo|X,D=1)=@1(X)—@o(X)+ E(U;— Uy|X,D=1)
is the parameter of interest (TT(X)) and

€= Uo—I—D(Ul— U()—E(U]_— Uo’X,D: 1))



e Decision to participate may be endogenous with respect to the
outcomes, so expect that E(Up|X,D) # 0.

e Heckman (1976,1979) showed that the endogeneity problem can be
viewed as an error in model specification



Adding and subtracting
E(Up|X,D)=DE(Upy|D=1,X)+(1—D)E(U|D =0,X), rewrite
the outcome model as

Y = @o(X)+Dorr(X)+E(UID=0,X)+ (9)
DIE(Up|D=1,X)—E(Upy|D=0,X)]+¢
= @o(X)+ Darr(X)+ Ko(X) + D[K1(X) — Ko(X)] + €
where

Ko(X) = E(Uo|D=0,X)
Ki(X) = E(Uo|D=1,X)

e — D{Up—E(Up|D=1,X)}+(1—D){Up— E(Up|D =0,X)}
+ D{Ui—Up— E(Us— Up|D = 1,X)}



- By construction, E(g|X,D) = 0.
- K1(X) and Ky(X) are termed control functions.

- When these functions are known up to some finite number of
parameters, they can be included in the model to control for the
endogeneity and regression methods (either linear or nonlinear)
applied to consistently estimate program.



- If no restrictions where placed on either ar1(X), K1(X), or
Ko(X), then the treatment impact parameter (a17(X)) could not
be separately identified from the control functions.

- Different implementations of control function estimators impose
different kinds of restrictions.

- Usually, functional form restrictions and/or exclusion restrictions
(variables that determine the participation process (i.e. the choice
of D) be excluded from the outcome equation).



ldentification through index restrictions

- Heckman and Robb (1986) show how index restrictions can be
used to secure identification of a7 (X).

- Participation is assumed to depend on a set of characteristics Z
through an index h(Zv) and on unobservables V:

D=1if h(Zy)+V >0,=0if h(Zy)+V <0

h(Z7y)+ V represents the net utility from participating in a
program. (McFadden, 1981, and Manski and McFadden, 1981).



Under this model, the function Ky(X) = E(Up|D =1,X) can be
written as

E(Up|D=1,X) = E(Uolh(Zy)+ V >0,X) (10)

Jon(zy) J=w uf (u, v|X)dudv (1)
fioh(zy) fjooo f(U, V\X)dua’v .

If F(Ug, V|X) is assumed to be continuous with full support in R?
and Fy(-) is invertible, then the index Zy can be written as a
function of the conditional probability of participation.



|dentification at infinity

- As h(Zy) approaches infinity, E(Uy|D =1, Z) approaches 0 (recall
that we assumed that E(Uy|Z) = 0).
- For this reason, subgroups with a high probability of participating

in the program (i.e. h(Z7) close to infinity) can be used to secure
identification of model parameters.

- Essentially, there is no selection problem for groups who always
participate. (Heckman, 1990).



Pr(D = 1|2) Pr(V > —h(Z:7))
1—Fv(=h(Z;7)).

h(Z;y) = —F,*(—Pr(D=1|2))

Lo



Heckman and Robb (1986) note that with the additional
assumption that the joint distribution of the unobservables, Uy and
V/, does not depend on X, except possibly though the index,

h(Z;y)
f(Uo, VIX) = f(Uo, VIh(Z:7)),
then E(Up|D =1, X) can be written solely as a function of the
probability of participating in the program, Pr(D =1|2):
E(h|D = 1,X)=E(W|D=1,P(Z))=Ki(P(2))
E(Uo|D = 0,X)=E(W|D=0,P(2))=Ko(P(2)). (12)

- A stronger assumption that would also imply index sufficiency is
independence, f(Uy, V|X) = f(Up, V).



- index sufficiency greatly simplifies the problem of estimating the
Kq(X), d € {0,1} functions and also aids in the identification
problem.

- Suppose @g(X) and h(Zy) were both linear in the regressors.
With one continuous variable included in Z but excluded from X |
we can allow for overlap between X and Z and even for the case
where X are fully contained in Z.(Cosslett, 1984).

- If the control functions are estimated nonparametrically,
distinguishing the treatment effect from the control function
requires the application of identification at infinity methods (more
later..)



Heckman (1976,1979), assumed that Uy and V are jointly normally
distributed which implies a parametric form for K1(P(Z)) and

Ko(P(Z)):

E(llD = 1,7)=Ki(P(£)) = C:SU\Z/ 1?;—(/1(/72(?;’))

E(UbID = 0.2) = Ko(P(2)) = 2% -T2 T,




- Heckman, Ichimura, Smith and Todd (1996), invoke index
sufficiency and nonparametrically estimate the K(-) functions are
estimatedas a function of the probability of participating in the
program., estimated by a probit model)

- This leads to a partially linear model and they use a variation of
the Robinson (1988) estimator to estimate it.

- They test and do not reject the index sufficiency restriction.



|dentification at infinity

- When the K1(P(Z)) and Ko(P(Z)) are estimated
nonparametrically, the intercept of the K1(P(Z)) — Ko(P(Z))
cannot be separately identified from the treatment effect (or1(X)).

- Under normality, functional form assumptions may be sufficient,

assuming that the form of or1(X) is not co-linear with the
Ki(P(Z))— Ko(P(Z)) functions.

- Andrews and Schafgans (1998) develop an empirically
implementable semiparametric version of Heckman's "identification
at infinity" estimator.



|dentification at infinity

- Approach is feasible when there is a subgroup in the data for
which Pr(D =1|Z) =1 for some set Z, meaning that individuals
with that set of characteristics always select into the program.

- In the index model described above, this would be the group for
which h(Zy) is close to infinity.



A Comparison of Control Function and Matching Methods

e Conventional matching estimators can in some cases be viewed as a
restricted form of a control function estimator.

e Recall that traditional cross-sectional matching methods assume
that selection is on observables, whereas control function methods
explicitly allow selection into programs to be based on observables
Z and unobservables V.



The assumption that justifies matching outcomes on the basis of Z
IS

E(Yo|D=1,Z) = E(Ys|D=0,2).

If X C Z, then, in terms of previous model, this assumption implies
that

E(Ug|D =1,2) = E(Up|D =0, 2).



This assumption is equivalent to assuming that the control
functions are equal for both the D =0 and D =1 groups

Ki(P(Z)) —Ko(P(£)) =0, (13)

in which case the model for outcomes can be written as

Yo = @o(X)+ Do (X)+Ko(P(Z)) +D{Us — Uy — E(Us — Up|D =1, X)}.



- This special case is selection on observables. (see Heckman and
Robb, 1986: Heckman, Ichimura, Smith and Todd, 1995: and
Barnow, Cain and Goldberger, 1980).

- When selection is of this form, many identification problems that

arise in trying to separate the treatment impact a7 (X) from the
bias function Ki(X) go away.

- Under the normal model, Ko(P(Z)) = K1(P(Z)) will, in general,
not be satisfied unless the errors have zero covariance, o,y = 0.



Comparison of normal/nonpar Models (JTPA data)

Pointwise Bias and Comparison with Normal Model

Figure 3: Local Linear Regression Estimates of Pointwise Bias (B(P))
Adult Males, Best Predictor P Model for The Probability of Program Participation

Average Earnings over Post-Program Six Quarters
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Stability of bias function over time

Pointwise bias over time, conditional
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Chapter 8: Instrumental Variables and LATE estimation

e Instrumental variables methods provide another approach to
estimating program effects in the presence of nonrandom

self-selection
e Can accommodate selection on unobservables

e Will consider applications with discrete and with continuous
Instruments.



The Wald Estimator

Consider the treatment effect model:
Y = @o(X)+ Dor(X) +€,
where
arr(X)=E(Y1—Yo|X,D=1)=0a(X)+ E(U;— W|X,D=1)
is the parameter of interest (TT) and

€= Uo—I—D(Ul— Uo—E(Ul— Uo’X,D: 1))



The Wald estimator

- Suppose that there is an exclusion restriction, a variable Z that
affects the program participation decision but does not enter into
the outcome equation.

- Also, assume that the conditioning variables X and the instrument
Z are binary and that the instrument takes on the values Zy and Z;.
- Assume that we condition on X by first partitioning the dataset
by X and then use the instrument to estimate the program effect
using the method of instrumental variables within X subsamples.

- The identifying assumption is that

E(Ug|X,Z) = E(Uy| X).



The Wald estimator

The so-called Wald estimator is:

E(Y|Z=2y,X)—E(Y|Z=2Z,X)
E(D|Z = Zy,X)—E(D|Z = Z1,X)
E(Y|Z=2y,X)—E(Y|Z=2Z,X)

AN AN

Pr(D=1|Z=2y,X)-Pr(D=1|Z = Z;,X)

The denominator is the difference in the probability of participating
in the program under the two different values of the instrument.



The Wald estimator

As noted in Heckman (1992), &, (X) recovers the average impact
of treatment on the treated (the TT parameter) only under one of

two alternative assumptions on the error term (in addition to the
assumption E(Up|X,Z) = E(Up|X)):

Case |I: Ui = Uy
or

Case Il: Uy # Uy and
E(Ui— W|X,Z,D=1)=E(U;— Up|X,D =1).



The Wald estimator

- In Case |, the average impact of treatment on the treated (TT) is
assumed to be the same as the average treated effect (ATE).

- Under Case Il, the ATE and TT parameters differ, but the
instrument does not forecast the unobservable component of the
gain from the program.



The Wald estimator

e Either of these assumptions would give
E(€|X,Z=2)=E(E|X,Z = 2).

e Note that E(D(Ul—Uo—E(Ul—Uo’X,D:1))’X,Z):PF(D:
LX)E(Up— Ug— E(Ur — Upg|X,D =1))|X,Z,D=1),s0 the
required assumption is that
E(Ui— W|X,Z,D=1)=E(U; — Up|X,D =1).

e Heckman (1992) provides some examples where the assumption
that the instrument does not help forecast the program gain can be
problematic, some of which are described below.



Local Average Treatment Effects (LATE)

e |f assumptions | or |l are not satisfied, then the Wald estimator
does not recover the TT nor the ATE parameters but still has a
meaningful alternative interpretation as a Local Average Treatment

Effect (LATE) (See Imbens and Angrist, 1994).

e However, LATE is the average treatment effect for a particular
group of people - those induced by a change in the value of the
instrument from Zp to Z; to participate in the program.

e The usefulness of LATE depends on whether this population is of
Interest.



Local Average Treatment Effects (LATE)

Some notation, following Imbens and Angrist (1994):

Do =value of D if Z = 2,
D1 =value of D if Z =2

Recall that everyone has a value of Yy and a Y7, though only one
of these is realized. Similarly, everyone has a Dy and a Dy, which
represents a hypothetical participation status under different values

of the instrument.



Local Average Treatment Effects (LATE)

The observed value of D is

D = ].(Z = Zo)Do—I— ].(Z = Zl)Dl = Do + ].(Z = Zl)(Dl — Do)

Putting this expression for D into Y = Yy + D(Y1 — Yp) gives:

Y=Y+ DO(Yl — Yo) + ].(Z = Zl)(Dl — Do)(Yl — Yo)



LATE

We will assume that the instrument Z is independent of Yjp, Y1, Dg
and Dx:

(Y07 Y17 D07 Dl)J—LZ

It may seem odd to assume this for Dy and D;p, because we are also
assuming that Z affects D. However, Z having an effect on D does
not mean that Z cannot be independent from Dy and D;. For

example, in a randomized trial, random assignment of the offer of
the program can be used as Z, but because this is random, it is not
correlated with Dy or Dq, which represents what a person would
decide without the offer or with the offer.



LATE

e We also require that Z has no relationship with either Yp or Y.

e Even in the case where Z is generated by a randomized experiment,
this assumption could be violated.

- Example: Angrist et. al. (2002) analyze the effect of a Colombia
private school voucher program, which randomly allocated vouchers
for tuition at private school to a random fraction of eligible children.
- Program stipulated that if a child repeats he/she is no longer
eligible for the voucher, so private schools may have promoted
children who randomly received vouchers, leading to a correlation
between Z and Yj.



LATE

We can divide the population into four types of people, depending
on their Dy and D; values:

. never-takers - those for whom Dy = D; =0
. compliers - those for whom Dy =0,D; =1
. defiers - those for whom Dy =1,D; =0

. always-takers - those for whom Dy = D; = 1.

When the instrument is the randomized offer of a program, defiers
are those who enter the program when it is not offered to them,
but do not enter the program when it is offered. One could think of
this behavior as being “irrational."



LATE

LATE assumes that everyone is affected by the instrument in the
same way, essentially, that there are no defiers, which is called a
monotonicity assumption (See Imbens and Angrist, 1994).

Without defiers, these different groups are identifiable in the data:
Z() Z1

never taker or complier never-taker
always-taker always-taker or complier

S O
|
)




LATE

- In the data, some “always-takers" (those with D =1 and Z =0)
are clearly recognized, while others (e.g. “compliers") are always
mixed with “always-takers" or “never-takers."

- From the data, we can figure out the proportions of the data that
are compliers, always-takers and never-takers.

That is, consider people for whom Z = Z;. We observe what
percentage of these people are always-takers. Because Z is
assumed to be independent of Dy and Dy, we have

P, = Prob[D =1|Z = 0].



LATE

By similar reasoning, get the proportion of never-takers (Pp)

P, = Prob[D =0|Z = 1].

Assuming no defiers, we get the proportion of compliers (P.)

P.=1—P,— P,



The next step is to obtain the average treatment effect for
compliers:

. Estimate E(Y|D =0,Z = Z;). This is the mean of Yj for
never-takers.

. Estimate E(Y|D =0,Z = Zy). This mean is a weighted average of
the mean Y{ for never-takers and compliers, with weights equal to
the the proportions of the types in the two populations (P, and P;).

. From these two means, can infer the mean of Yy for compliers:
E(Yo|Dg=0,D; =1)



4. Repeat the first three steps for always-takers and Y;7. Get the mean
of Y7 for always-takers and the mean of Y; for always-takers mixed

with compliers. Use to get E(Y1|Dg =0,D; =1).

5. Take the means for compliers to get:
orate = E(Y1— Yo0|Do =0,D1 =1)



Alternatively, as shown by Imbens and Angrist (1994), an easier
approach to getting a; a7e(X) is to use Z as an instrumental
variable for D. If we condition on X by simply dividing the data by
X cells, then this is the Wald estimator:

E(Y|Z=21,X)—E(Y|Z = Zy,X)
E(D|Z=Z,X)— E(D|Z = Zy,X)

o aTe(X) =



In the case of a randomized control trial with imperfect compliance,
o aTe(X) is equivalent to the intent-to-treat estimate divided by
the difference between the probability of being treated for those
assigned to the treatment group and those assigned to the control
group. If most people are compliers, than you can use a bounds

approach that uses the estimate of a; o7£(X) to obtain bounds for
an estimate of ATE. (See Wooldridge (2009)).



Applications: example from labor economics

Angrist (1990) - evaluates the effect of serving in the Vietnam War
on future earnings, uses the draft lottery number as an instrument
for whether they participated. Never-takers = men who would not
serve in the war under any circumstances, always-takers = men
who would serve even if not assigned (e.g. career military).
Compliers serve only if drafted.

Heckman (1997) notes that the draft lottery number is not
necessary valid as an instrument for the ar7(X) parameter. If
firms took into account lottery numbers in making hiring decisions,
then could induce correlation between the error term and the
instrument. Even in that case, the IV estimate will have a valid
interpretation as a LATE estimate.



Applications: example from development economics

Angrist et. al. (2002) study the impacts of a voucher program in
Colombia (PACES), using both an intent-to-treat approach and an
instrumental variables approach. The program gave more than
125,000 vouchers through lottery covering a little more than half
the cost of attending a private secondary school. About 90% of the
lottery winners used the voucher.

- use the win/loss status as an instrument for scholarship receipt.
ITT estimates show that lottery winners were 10 percent more
likely to complete the 8th grade and that they scored, on average,
0.2 standard deviations higher on standardized tests three years
after the initial lottery. LATE estimates that are roughly 50 percent
higher than the ITT estimates.



Chapter 9: Marginal Treatment Effects and Local IV

e Recent advances in the program evaluation literature have led to a
better understanding of the relationship between the TT, ATE and
LATE parameters and of new ways to estimate them.

e Heckman and Vytlacil (2005) develop a unifying theory of how the
parameters relate to one another using a new concept, called a
marginal treatment effect (MTE).



Model

Consider the treatment effect model of the previous sections,
written in slightly more general form that does not assume additive

separability:

Y = DYi+(1—D)Yy
Y1 = wm(X,U)

Yo = wo(X, o)

D = 1iftu(Z)—Up=>0

It is assumed that Lg(Z) is nondegenerate conditional on X, so
that there is variation in who participates in the program holding X
constant (i.e. that there is an exclusion restriction). The error
terms are assumed to be independent of Z conditional on X.



MTE and IV

- Denote the propensity score as
P(£)=Pr(D=1|Z=z) = Fy,(t(Z))
- Assume that there is full support (0 < Pr(D=1|2) < 1)



MTE and IV

Heckman and Vytlacil (2005) show that without loss of generality,
one can assume Up distributed uniformly. To see why, suppose
that

D=1if ¢(Z)—v>0

so that
Pr(v < c)= Fy(c).

Because Fy/(-) is a monotone transformation of the random
variable v, we have

PF(F\/(V) < F\/(C)) = F\/(C).

Define Up, = Fy(v) and note that Pr(Up, < t)=t. Thus, Up. is
uniformly distributed between 0 and 1.



When Up. is uniformly distributed,

E(D|Z) =Pr(D =1|Z) = Fy,(to(Z;)) = o(Zi).

Let Z and Z’ be two values of the instrument such that
Pr(D=1|Z) < Pr(D =1|Z"). The threshold crossing model of
program participation implies that some individuals who would have
chosen D =0 with Z = Z will instead choose D =1 when Z =2
but no individual with D =1 when Z = Z would choose D =0
when Z = 7.

Vytlacil (2002) shows that the assumptions required to justify a
threshold crossing model are the same as the monotonocity
conditions typically assumed to justify application of LATE
estimators, proposed in Imbens and Angrist (1994).



Parameters of interest in terms of op7e(X)

Using this framework, we can define different parameters of
interest. Let A = Y7 — Y).

(i) The average treatment effect (ATE):
OCATE(X) — E(A‘X — X)

(ii) The average effect of treatment on the treated, conditional on

a value of P(2),:

arr(X,P(Z),D=1)=E(A|X =x,P(z)=P(Z),D=1)



Parameters of interest in terms of op7e(X)

(iii) The marginal treatment effect (MTE) conditions on a value of
the unobservable:

amte = E(A|X = x,Up = u)

(iv) The local average treatment effect (LATE) parameter
o ate(X, P(Z),P(Z')) =

E(Y|P(Z) = P(2),X) - E(Y|P(Z) = P(Z'), X)
P(Z)=P(Z) |




MTE is a new concept. If Up = P(Z), then the index
Uo(Zi) — Up, =0 (by the above reasoning, uo(Z;) = P(Z) when
Up, is uniformly distributed).



How do we interpret op7re(X, U)?

e People with the index equal to zero have unobservables that make
them just indifferent between participating or not participating in
the program.

e People with Up. = 0 have unobservables that make then most
inclined to participate.

e People with Up. =1 have unobservables that make them the least
inclined to participate.



MTE and Local IV

All the parameters can be written in terms of MTE, first note that
the following statements are equivalent, because conditioning on
P(Z) is the same as conditioning on Z:

Pr(Yi e AAX=x,Z2=2,D=1)=Pr(Y; € A|lZ=2z,Up < P(z))
=P(Y; e AIX=x,P(Z)=p(z),D=1)

Similarly,

Pr(Yi e AAX=x,Z=2,D=0)=Pr(Y; € A|lZ=2,Up > P(z))
=P(Y;€c AAX=x,P(Z)=p(z),D =0)



MTE and Local IV

In terms of the model, the parameters are:

arr(x, P(2)) = E(A|X = x, Up < P(2))

E(Y|X =x,P(Z)=P(2))— E(Y|X = x,P(Z) = P())
P(z) - P(Z)

OCLATE(XazaZ/) =



MTE and Local IV

E(Y|X =x,P(Z) = P(z)) = Pr(z) E(Y1|X = x,P(Z) = p(z),D = 1)+

(1-P(2))E(Yo|X = x,P(Z) = p(2),D = 0)

Jp(z) E(YolX = x, Up = u)dUp
1-P(2)

JEE E(Yy|1X = x,Up = u)dUp

— ) P(2)

+(1-P(2))

Thus, the numerator of LATE is equal to

P(z) 1
/ E(ViIX =x.Up=u)dUp+ [, E(YolX =x Up = u)dUp
0

P(z

P(Z') 1
—/ E(Yl\X:x,UD:u)dUD—/( E(YolX =x Up = u)dUp
0 P(Z



MTE and Local IV

Therefore, oy aTe(z, P(2), P(Z')) equals

o) E(YA|X = x, Up = u)dUp — [55) E(Yo|X = x, Up = u)dUp

P(z) - P(Z)
= E(A|X =x,P(Z') < Up < P(2)),

which is the average treatment effect for people with Up within a
given range.

These people would not participate if Z = Z' but do participate if
Z = z. The change in the value of the instrument changes their
participation status. This group is known as the complier group.



Heckman and Vytlacil (2005) show that all of the the parameters of
interest can be written as an average of op7e(X, Up) for values of
Up lying in different intervals.

JTEO E(AIX = x, Up = u)dUp
P(Z)

arr(X) =

1
oaTe(X) = /OE(A’X:&UD:U)dUD

Z
fp((z/) E(A‘X =x,Up = U)dUD

O‘LATE(Xap(Z)v’D(Z,)) P(Z)—P(Z’)

Knowledge of the MTE function therefore enables computation of
all of the parameters of interest.



Estimation: MTE as a limiting form of LATE

e The o7 function depends on a value of an unobservable.
Heckman and Vytlacil (2005) propose an estimation strategy that is
implementable when the researcher has access to a continuous
instrumental variable, Z, that enters into the participation equation
but not the outcome equation.

e The MTE parameter can be seen as a limiting form of LATE.

e Heckman and Vytlacil define a local instrumental variables
estimand as



IE(Y|P(Z) = P(Z),X)
IP(Z)
_ - E(YIP(z) = P(Z).x=X) — E(Y|P(z) = P(Z'),x = X)

av(X,P(Z)) =

P(Z")—>P(Z) P(Z)—P(Z')
= oum7e(X,Up = P(2)).



Estimation proceeds in two steps.

1. First, estimate the program participation (propensity score) model
to get P(Z).

2. Then, estimate aE(gLP((ZZ))’X) nonparametrically (which can be done

by local linear regression of Y on P(Z)).



Evaluating this function (separately by data grouped by X) for
different values of P(Z) traces out the ap7e(X, Up) function.

The different estimands OCTT(X), OCATE(X), OCLATE(X) can then be
obtained by integrating under different regions of the ayre(X, Up)

function.



Applications

- For a recent application to estimating returns to education using
U.S. data, see Carniero, Heckman and Vytlacil (2001).

- Doyle (2013, forthcoming in AER) - uses MTE to analyze effect
of foster care placement on outcomes related to foster children
(earnings, employment, teen motherhood, delinquency)



Doyle (2013

Figure 3A: Delinquency MTE

Figure 3B: Teen Motherhood MTE
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Figures report the results of a local quadratic estimator evaluated at each percentile of P(z).

5-95% confidence intervals reported, calculated using a bootstrap with 250 replications, clustered at the case manager level. Bandwidth=0.037.




Chapter 10: Regression Discontinuity Methods

Goal is to evaluate causal impacts of an intervention

Assignment to treatment is determined in part by the value of an
observed covariate lying on either side of a fixed threshold (cut-off)

Design first introduced by Thistlewaite and Campbell (1960) to
evaluate the effect of National Merit awards on career aspirations of
award recipients.

Analyzed by Goldberger (1972) in the context of evaluating
education interventions and Berk and Rauma (1983) in analzying
effect of an unemployment benefit program on recidivism rates.



e Many studies implicitly rely on nonlinearities or discontinuities in the
assignment rule (Black (1996) and Angrist and Krueger (1991)).

e Since 1990’s, there has been a large number of studies in
economics and other fields applying and extending RD methods
(will discuss many examples later)

e New theoretical advances in interpretation and estimation



Potential Outcomes Framework

Potential outcomes associated with treated and untreated states

Yi(0), Yi(1)

Framework laid out in Fisher (1951), Roy (1951), Quandt (1972),
Rubin (1978)

Interest usually focuses on

Yi(1) - Yi(0)

Let W; =1 if unit / exposed to treatment, else W; = 0.
Observed outcome

Yi = (1= W;) Yi(0)+ W, Yi(1)
= Y;(0) + Wi(Yi(1) — Yi(0))



Assignment to Treatment

Let (Xi, Z;) be a vector of covariates or pretreatment variables
known not to be affected by treatment (e.g. pre-test score, age)

Assignment to treatment is determined either completely or partly
by the value of X; being on either side of a fixed threshold.

Y:(0) or Y;(1) may also be associated with X;, but the dependence
is assumed to be smooth

Discontinuities in the conditional distribution of Y; (or in its
conditional expectation) are attributed to a causal effect of
treatment.



Two Types of Designs

o Sharp Regression Discontinuity (SRD) Design
W; =1{X; > c} (14)
All individuals with covariates of ¢ or greater are assigned to
treatment.

e We can use the discontinuity in the conditional expectation of the
outcome given the covariate to uncover an average causal effect of
treatment

TSRD = /I'mX¢CE(Y,"X,' = X) — /imXTCE(Y;’X; — X) (15)
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Fig. 2. Potential and observed outcome regression functions.



Two Types of Designs

o Fuzzy Regression-Discontinuity (FRD) Design

e Prob of receiving treatment need not change from 0 to 1 at the
threshold, but there there is a discontinuous jump in the probability,

so that

limy c E(W;i| X; = x) — lim c E(W;| X; = x) # 0
or,equivalently,

limy cPr(W; =1|X; = x) — lim . Pr(W; =1|X; =x) #0

e Treatment effect can be obtained by the ratio

lim, cE(Y:|Xi = x) — lime E(Y;|X; = x
TFRD = - !
/imXiCE(VV,"X,' :X)—/I'mXTCE(VV,"X,' :X)

(16)



Why?

Assume constant treatment effect Terp.

Yi = Yi(0) + WiYi(1) - Y;(0)
Y; = Yi(0)+ Witrrp
|imX¢CE(Y;’X; :X) =

limy cE(Yi(0)| Xi = x) + limy c E(Wi| Xi = x)TrrD
limc E(Y; | Xi = x) =
limy | cE(Yi(0)|Xi = x) + limyc E(W; | Xi = x)TFrD



Take the difference, use the fact that E(Y;(0)|X; = x) is continuous
at X; = ¢ and solve for terp.

limy c E(Y|Xi = x) — lime E(Yi| X = x) =
|imX¢CE(VV,"X,' — X) — /imxTcE(VVi‘Xi — X)TFRD

limy cE(Yi|X; = x) — limec E(Yi| X; = x)
/imXiCE(VV,"X,' = X) — /I'mXTCE(VV,"X,' = X)

TFRD =



o = N W A~ O,

Fig. 4. Potential and observed outcome regression (FRD).




Interpretation of FRD when treatment response is
heterogeneous

Assume that treatment effect varies by unit Tegp random

Let W;(x) be the potential treatment status given cut-off point x,
for x in a neighborhood of c.

W;(x) =1 if unit / would take treatment if cut-off equals x

Assume monotonicity: W;(x) is nonincreasing in x at x = ¢



Define compliance status

e Compliers: have
/imX¢X; VV,(X,) — O, /imXTXi VV,(X,) — ]., (17)

would get treatment if cut-off X; or below, would not get treatment
otherwise

o Nevertakers: do not get treatment either way

/I'mxixl. VV,(X,) = O, /imXTXi VV,(X,) =0 (18)

e Always takers: get treatment either way

/"mX¢X; VV,(X,) = 1, /imXTXi VV,(X,) =1 (19)



For example, consider a program that assigns children with a
pre-test score below a threshold to some remedial intervention (e.g.
a summer reading program).

Compliers are children who participate in the program only if their
test score is below the threshold and not otherwise. They comply
with their assigned treatment status.

Always-takers are children who manage to receive the intervention
regardless (e.g. parents request that they attend the program)

Never-takers are children who do not attend the program even if
assigned to it.



Interpretation of Trrp

In that case, Trrp gives the average treatment effect for compliers.

(shown in Hahn, Todd and Van der Klaauw, 2001, building on
insights of Angrist and Imbens, 1994, about LATE estimators).



Another example of FRD Design
Van Der Klaauw (2002)
Studies effect of financial aid on college admissions

Association is ambiguous. More generous financial aid offers make
students more likely to attend, but those students are also likely to
have more generous offers from other places.

x; - numerical score assigned to college application based on the
objective part of the application (SAT scores, grades)

G=1if0< X<
G=2ifcg <X, <o

Gi=Lifc_1 <X,



Comparison of RD Approach with a Matching Approach

e Matching assumes

Y(0),Y(1) LL wix (21)

e In that case, treatment effect can be obtained by comparing people
with same x values who did and did not receive treatment

E(Y(1)=Y(0)|X =x) = E(Y|W =1,X =c)— E(Y|W =0,X = )

e This approach would not exploit the jump in the probability of
assignment at the discontinuity point

e |t could not be implemented with a sharp design, where there is no
overlap.

e Treated units with x; = ¢ include both compliers and alwaystakers.

e Unconfoundedness is based on units being comparable if covariates
are similar.



External and Internal Validity of RD Designs

e When treatment response is heterogeneous, RD approach provides
estimates for subpopulation with x;=c.

e |f FRD and treatment effect heterogeneous, then effect is further
restricted to the effect on compliers only (and compliers cannnot be
identified in the data)

e The RD design has high internal validity (valid with the population
studied), but potentially limited external validity (limited
application to outside populations)



Estimation

e For sharp design, need estimators of two limits

TSRD — /imXiCE(Y,"X,' :X)—/I'mXTCE(Y,"X,' :X) (23)

e Could estimate each limit by kernel regression

. Y xi<c YiK(7=

Qy(x) = == )(q_’}( ) (24)
ZX,'<CI<(T)

. Y > YiK (7~

fir(x) = —=— ; (25)

ZX;ZCK(Xi;X)




With rectangular (uniform) kernel

o K(u)=1/2for =1 <u <1, =0 elsewhere

X Yil(c<Xi<c+h) XL.Yil(c—h<Xi<c)
X7 1(c < X; <c+h) X7 1(c—h< X <c)

TSRD = (26)

e Simple kernel regression suffers from boundary bias problem - slower
rate of convergence at boundary points than in interior points.



Boundary bias

JE ()F (x)dx 9 h
fC-i—h f(X)dX = Hr(c) + /ImxiC aX'u(X)2 + O(h )

C

plimfi,(c) =

e bias is linear in the bandwidth, A.

e At interior points, bias is usually of order h*>. Convergence of bias
to 0 is slower at boundary points.



Recommended alternative: Local linear regression

Fan and Gijbels (1996) discuss local linear regression methods that
have the same order of convergence at boundary points as in
Interior points.

These methods fit a regression to observations within a distance h
on either side of the discontinuity point.

} 1 X,'—C
ming, g, Z (Yi— o —Br(Xi— C))ZK(

I':].,X,'ZC

) (27)

¢, provides an estimator of u, at the point x=c
Obtain ¢, similarly and then obtain treatment effect as ¢, — Q.

Local linear regression has same variance as kernel regression, but
faster rate of convergence of bias at boundary points.(Fan and

Gijbels, 1996).



Estimation under the FRD design

Again, we need to estimate the expected value of the outcome on
both sides of the discontinuity point

il X,'—C

ming gy Y (Yi-a B PK(LS) (@
ming g Y. (Vi@ OPK(TE) (20)

iI=1,x;<c



Estimation under the FRD design cont...

e In addition, estimate the expected value of the treatment indicator
on both sides of the discontinuity point

mingpr Y, (Wi B - KT (30)
mingr e Y. (Wimon— X - )PK(CS) (31

I=1,x;<c

e The RD treatment effect estimate under the FRD is




Smoothing parameter selection

e For a given bandwidth,h, let the regression function at x be

e Define the cross-validation criterion as

n

vy (h) = 1 (Y~ (X))’

o where fI_;(X;) is the so-called leave-one-out estimator, that leaves
out the ith datapoint in calculating the estimate at X;.



Smoothing parameter selection

Choose h to minimize CV,, (h) over a grid of possible bandwidths.

he = argmin, CV,, (h)

Typically, get a cross-validation "check function"

It is also possible to choose the bandwidth locally, focussing only on
data points within close distance to the cut-off point c.

Can choose a separate bandwidth for estimating the regression
function of W; given X;



Assessing the variance of the estimator

e (Can obtain standard errors using bootstrap methods

e Bootstrap methods are useful when it is cumbersome to obtain
asymptotic standard errors.

(i) Generate B bootstrap subsamples from the original data (can
use 100% sampling with replacement.)

(ii) Estimate treatment effect within each bootstrap sample

(iii) The estimate of the treatment effect is based on the original
data. The empirical variation across bootstrap estimates provides
an estimator of the variance.






Should analysis condition on other covariates?

There may be other covariates (Z) that are observed and that
determine outcomes

Presence of these covariates rarely changes the identification
strategy. The distribution of outcomes is usually continuous in
other covariates.

Do not necessarily need to condition on other covariates.

In practice, conditioning on Z may be helpful if we use observations
on X that are not too close to c.



Graphical analysis

Integral part of RD analysis

RD -> treatment impact measured by a discontinuity in expected
value of outcome at a particular point

Inspect histogram estimate of avg value of the outcome around the
threshold - is there evidence of a jump?

Calculate averages that are not smoothed over the cut-off

Also verity that there is a jump in the probability of treatment at
the cut-off point

It is also useful to inspect graphs for covariates and density of the
“forcing" variable to assess credibility

Plot average values of other covariates

Plot the density of the forcing variable to look for evidence of
manipulation (e.g. individuals know the threshold and can manipulate
their value of x;, for example, by retaking a test.)



RD Examples: Card, D., Dobkin, C.,(2008,AER)

Effect of health insurance coverage on health care utilization

Medicare eligibility at age 65 leads to sharp changes in the health
insurance coverage of the U.S. population and health care
utilization increases after age 65.

Paper compares health-related outcomes (such as different kinds of
doctor visits and proceures) among people just before and just after
65, also examining results disaggregated according to group
characteristics.

It follows DiNardo and Lee (2004) and assumes the age profiles in
equations (1), (2a) and (2b) are continuous polynomials with
potential discontinuities in the derivatives at age 65.

They also fit many of the models using local linear regression (as
suggested by Hahn, Todd and van der Klaauw, 2001) and find
results to be relatively robust.



RD Examples: Lalive (2007, J of Econometrics)

Examines whether extended benefits affect unemployment duration

Analyzes effect of a targeted program that extends the max
duration of unemployment benefits from 30 weeks to 209 weeks in
Austria for individuals 50 and older living in certain geographic
regions.

There are sharp discontinuities in treatment assignment at age 50
and at the geographical border between eligible and ineligible
regions.

Uses social security data and data on unemployed.

Two identification strategies: (i) compare individuals around the
age cut-off, (ii) compare individuals across geographic borders

Finds that job search is prolonged by 0.09 weeks per additional
week of benefits for women and unemployment duration increase by
0.32 weeks per additional week of benefits for women.



RD Examples: Lalive (2007, J of Econometrics)
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Fig. 1. Regional distribution of REBP.



RD Examples: Lalive (2007, J of Econometrics)

Table 1
Selected descriptive statistics (means)
Column
Living in (1) (2) (3)
Age bracket Treated region Treated region Control region
50-53 years 46-49 years 50-53 years
A. Men
Age (years) 51.7 48.0 51.7
Distance to border (minutes) 28.2 27.2 -39.2
Married (share) 0.828 0.785 0.821
Construction (share) 0.481 0.492 0.600
Number of spells 4,759 4,975 8,537
B. Women
Age (years) 51.5 48.1 519
Distance to border (minutes) 27.1 26.6 -37.1
Married (share) 0.780 0.696 0.721
Construction (share) 0.030 0.027 0.034
Number of spells 3,466 2,193 3,625

Source: Own calculations, based on ASSD.



RD Examples: Lalive (2007, J of Econometrics)
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Fig. 2. The effect of REBP on unemployment duration for men: age threshold. Sample restricted to inflow into unemployment the period
8/1989 until 7/1991 (during REBP) and to individuals living in treated region.



RD Examples: Lalive (2007, J of Econometrics)
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Fig. 3. The effect of REBP on unemployment duration for men: border threshold. Sample restricted to inflow into unemployment the
period 8/1989 until 7/1991 (during REBP) and to individuals aged 50 years or older.



RD Examples: Lalive (2007, J of Econometrics)
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individuals aged 50 years or older.



RD Examples: Jacob, B.A., Lefgren, L., (2004, Restat)

Effect of summer school and grade retention on student performance

Analyzes the effectiveness of remedial education programs on test
scores.

In 1996, Chicago public schools instituted an accountability policy
that tied summer school and grade retention to performance on
standardized tests.

Finds that summer school increased academic achievement in
reading and mathematics and that these positive effects remain in
the two years following the summer school program.

Grade retention did not have negative consequences for third
graders and increased short run performance.

Retention had no impact on math performance of older students
(sixth graders) and a negative impact on reading.



RD Examples: Jacob, B.A., Lefgren, L., (2004, Restat)

Effect of summer school and grade retention on student performance

e Uses administrative data from the Chicago Public School System

e 40% of third-graders and 30% of sixth graders failed to meet
promotional standards.

e 3% of students who scored below the cut-off received waivers from
summer school, so design was fuzzy.



FIGURE 1.—STUDENT PROGRESS UNDER THE CHICAGO ACCOUNTABILITY PoLicy
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FiIGURE 2.—THE RELATIONSHIP BETWEEN JUNE READING SCORES AND THE PROBABILITY OF ATTENDING SUMMER SCHOOL OR BEING RETAINED
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Sample of third- and sixth-grade students from 1997 to 1999 whose June math score exceeded the promotional cutoff bet whose June reading score did not.




TABLE 3.—THE NET EFFECT OF SUMMER SCHOOL AND GRADE RETENTION
ON STUDENT ACHIEVEMENT

Specification
OLS v v
Dependent Variable (1) (2) (3)
Third grade:
Reading:
1 year (n = 13,687) 0.082 0.112 0.104
(0.019) (0.026) (0.025)
2 years (n = 12,806) 0.032 0.064 0.062
(0.020) (0.027) (0.026)
Math:
1 year (n = 13,664) 0.155 0.132 0.136
(0.019) (0.026) (0.024)
2 years (n = 12,802) 0.066 0.087 0.095
(0.021) (0.027) (0.026)
Sixth grade:
Reading:
1 year (n = 7,920) -0.013 0.012 0.024
(0.022) (0.029) (0.027)
2 years (n = 7,262) —0.027 -0.015 0.000
(0.024) (0.032) (0.030)
Math:
1 year (n = 7,904) 0.056 0.077 0.077
(0.016) (0.021) (0.021)
2 years (n = 7,249) 0.007 0.018 0.019

(0.019) (0.025) (0.023)

Additional performance
and demographic
covariates No No Yes



FIGURE 4.—THE RELATIONSHIP BETWEEN READING AND MATH PERFORMANCE AND JUNE READING PERFORMANCE FOR THIRD-GRADE STUDENTS
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Sample of third-grade students from 1997 to 1999 whose June math score exceeded the promotional cutoff but whose June reading score did not.



FIGURE 5.—THE RELATIONSHIP BETWEEN READING AND MATH PERFORMANCE AND JUNE READING PERFORMANCE FOR SIXTH-GRADE STUDENTS
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Examples: Hahn, J., Todd, P., Van Der Klaauw, W., (1999).

Evaluating the effect of an anti discrimination law

e Assesses the impact of an anti-discrimination law on minority hiring
that mandates that firms with 15 or more employees make reports

to the government about the ethnic/racial /gender composition of
their work.

e Firms with at least 15 employees are covered by Title VII of the
Civil Rights Act (1972 Amendment extended coverage from firms
with 25 or more to firms with 15 or more employees).

e Uses a sharp RD design.

e Finds that law led to modest increase in minority hiring.



RD Examples

Effect of class size on scholastic achievement

Angrist, J.D., Lavy, V. (1999, QJE)

Analyzes the effect of class size on student test scores using data
from Israel and exploiting a discontinuity created by , which states
that a class be added whenever average class size reaches 40
students.

Finds that reducing class size induces a significant and substantial
increase in test scores for fourth and fifth graders, although not for
third graders.



RD Examples

Estimating the value parents place on school quality

Black, S., (1999, QJE)

Uses house prices to infer the value parents place on school quality.

Compares, within school districts, the prices of houses located on
attendance district boundaries - houses that differ only by the
elementary school the child attends.

This comparison removes the variation in neighborhoods, taxes, and
school spending.

Finds that parents are willing to pay 2.5 percent more for a 5
percent Increase In test scores.

Possible that parents on either side are different, so that estimate is
a lower bound on valuation.



RD Examples:
Chay, K., McEwan, P., Urquiola, M., (AER, 2005)

Effects of a school incentive program on test score performance

e Evaluates the effect of a school-incentive program in Chile (the
Chile-900 program) in which resources were allocated based on
cutoffs in schools’ mean test scores.

e Shows how a regression discontinuity design that exploits the
discrete nature of the selection rule can be used to evaluate the

program.

e Finds that the P-900 program had significant but modest size
effects on test score gains.



RD Examples: DiNardo, J., Lee, D.S., 2004, QJE)

Effect of unionization on labor market outcomes

e Using US establishment-level data on establishments that faced
union organizing drives during 1984-1999, this paper uses a sharp
RD design to estimate the impact of unionization on business
survival, employment, output, productivity, and wages.

e Compares outcomes for employers where unions won the election by

a close margin with those where the unions lost by a close margin
(e.g. 49% compared to 51%).

e Impacts on all outcomes are small and impacts on wages are close
to zero. Concludes that mandates for employers to bargain with
unions had little effect.



RD Examples: Card, D., Mas, A., Rothstein, J., (2006, QJE)

Tests for discontinuities in the dynamics of neighborhood racial composition

e Theoretical models of social interactions (Schelling (1971)) predict
tipping behavior in neighborhoods - e.g. once the minority share in
a neighborhood exceeds a so-called tipping point,all the whites
leave.

e This paper uses regression discontinuity methods and Census tract
data from 1970 through 2000 to test for discontinuities in the
dynamics of neighborhood racial composition.

e Finds evidence for tipping-like behavior in most cities, with a
distribution of tipping points ranging from 5% to 20% minority
share, but evidence for tipping points in on other outcomes, like
house prices.



RD Examples: Lee (2007, J of Econometrics)

Effect of incumbancy advantage
Uses data on US Congressional election returns from 1946 to 1998.

Analyzes the effect of the incumbancy advantage at the level of the
party at the district level, without regard to the identify of the
nominee for the party.

For example, analyzes the prob of winning the election in t+1 given
that democrats won the election in t, coming districts where they
won by a close margin to districts where they lost by a close margin.

Paper recommends checking the density of observables to test for
systematic selection around the cut-off point.

Finds that democrats who just barely win the election are much
more likely to run for office and succeed in the next election
compared to democrats who barely lose, which implies a large
incumbency advantage. (also see Moretti and Butler, 2004, QJE)



Recommended RD Practices
(Imbens and Limieux, 2007)

Sharp RD Designs

1. Graph the data by computing the average value of the outcome

variable over a set of bins. The bin width should be large enough to
have a sufficient amount of precision so that the plots looks smooth
on either side of the cut-off value, but also small enough to be able
to see the jump around the cut-off value.

2. Estimate the treatment effect by running linear regressions on
both sides of the cut-off points using only data within a bin width h
of the cut-off point. These are kernel regressions using a
rectangular kernel.

-standard errors can be computed using standard least squares
methods (using robust standard errors).

-optimal bandwidth can be chosen using cross-validation



3. Examine robustness of the results by

(a) looking at possible jumps in the value of other covariates
around the cut-off point.

(b) using various values of the bandwidth, with and without
controlling for other covariates in the regression.

4. The performance of the estimator can be improved by using
nonparametric local linear regression and computing the standard
errors either using a plug-in approach or by bootstrapping.



Fuzzy Regression Discontinuity Designs
1. Graph the average outcomes over a set of bins as in the case of

SRD, but also graph the probability of treatment.

2. Estimate the treatment effect using TSLS applied only to data
within h of the cut-off (above and below), which is numerically
equivalent to computing the ratio in the estimate of the jump (at
the cutoff point) in the outcome variable over the jump in the
treatment variable.

3. Standard errors can be computed using robust TSLS estimates
or using a plug-in estimator.



4. Robustness can be examined using similar approaches as in SRD.

5. The performance of the estimator can again be improved by

using nonparametric local linear regression instead and computing
the standard errors either using a plug-in approach or by
bootstrapping.



	Applications

